Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/16282
Title: A generalization of the Moore-Penrose inverse related to matrix subspaces of C(nxm)
Authors: Suárez Sarmiento, Antonio F. 
González Sánchez, Luis 
UNESCO Clasification: 120111 Teoría de matrices
120110 Algebra lineal
Keywords: Moore-Penrose inverse
Frobenius norm
S-Moore-Penrose inverse
Approximate inverse preconditioning
Constrained least squaresproblem
Issue Date: 2010
Journal: Applied Mathematics and Computation 
Abstract: A natural generalization of the classical Moore-Penrose inverse is presented. The so-called S-Moore-Penrose inverse of a m x n complex matrix A, denoted by As, is defined for any linear subspace S of the matrix vector space Cnxm. The S-Moore-Penrose inverse As is characterized using either the singular value decomposition or (for the nonsingular square case) the orthogonal complements with respect to the Frobenius inner product. These results are applied to the preconditioning of linear systems based on Frobenius norm minimization and to the linearly constrained linear least squares problem.
URI: http://hdl.handle.net/10553/16282
ISSN: 0096-3003
DOI: 10.1016/j.amc.2010.01.062
Source: Applied Mathematics and Computation [ISSN 0096-3003], v. 216 (2), p. 514-522, (Marzo 2010)
Rights: by-nc-nd
Appears in Collections:Artículos
Thumbnail
Adobe PDF (271,05 kB)
Show full item record

SCOPUSTM   
Citations

5
checked on Aug 9, 2020

WEB OF SCIENCETM
Citations

5
checked on Jun 21, 2020

Page view(s)

15
checked on Aug 8, 2020

Download(s)

5
checked on Aug 8, 2020

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.