Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/16282
DC FieldValueLanguage
dc.contributor.authorSuárez Sarmiento, Antonio F.en_US
dc.contributor.authorGonzález Sánchez, Luisen_US
dc.date.accessioned2016-04-01T02:31:13Z-
dc.date.accessioned2018-03-15T14:36:21Z-
dc.date.available2016-04-01T02:31:13Z-
dc.date.available2018-03-15T14:36:21Z-
dc.date.issued2010en_US
dc.identifier.issn0096-3003en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/16282-
dc.description.abstractA natural generalization of the classical Moore-Penrose inverse is presented. The so-called S-Moore-Penrose inverse of a m x n complex matrix A, denoted by As, is defined for any linear subspace S of the matrix vector space Cnxm. The S-Moore-Penrose inverse As is characterized using either the singular value decomposition or (for the nonsingular square case) the orthogonal complements with respect to the Frobenius inner product. These results are applied to the preconditioning of linear systems based on Frobenius norm minimization and to the linearly constrained linear least squares problem.en_US
dc.formatapplication/pdf-
dc.languageengen_US
dc.relation.ispartofApplied Mathematics and Computationen_US
dc.rightsby-nc-nd-
dc.sourceApplied Mathematics and Computation [ISSN 0096-3003], v. 216 (2), p. 514-522, (Marzo 2010)en_US
dc.subject120111 Teoría de matricesen_US
dc.subject120110 Algebra linealen_US
dc.subject.otherMoore-Penrose inverseen_US
dc.subject.otherFrobenius normen_US
dc.subject.otherS-Moore-Penrose inverseen_US
dc.subject.otherApproximate inverse preconditioningen_US
dc.subject.otherConstrained least squaresproblemen_US
dc.titleA generalization of the Moore-Penrose inverse related to matrix subspaces of C(nxm)en_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.amc.2010.01.062en_US
dc.identifier.scopus2-s2.0-77649232209-
dc.identifier.scopus77649232209-
dc.identifier.isi000275739000020-
dc.contributor.authorscopusid36814487500-
dc.contributor.authorscopusid7202218949-
dc.identifier.absysnet720612-
dc.identifier.crisid976;1254-
dc.description.lastpage522en_US
dc.identifier.issue2-
dc.description.firstpage514en_US
dc.relation.volume216en_US
dc.investigacionCienciasen_US
dc.project.referenceCGL2008-06003-C03-01/CLI.-
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess-
dc.type2Artículoen_US
dc.contributor.daisngid5154886-
dc.contributor.daisngid1802854-
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Suarez, A-
dc.contributor.wosstandardWOS:Gonzalez, L-
dc.date.coverdateMarzo 2010en_US
dc.identifier.supplement976;1254-
dc.identifier.supplement976;1254-
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptDepartamento de Ingeniería Telemática-
crisitem.author.deptArquitectura y Concurrencia-
crisitem.author.deptIU de Ciencias y Tecnologías Cibernéticas-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.deptSIANI: Modelización y Simulación Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.orcid0000-0002-3043-7161-
crisitem.author.parentorgIU de Ciencias y Tecnologías Cibernéticas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameSuárez Sarmiento, Álvaro-
crisitem.author.fullNameGonzález Sánchez, Luis-
crisitem.author.departamentoIngeniería Telemática-
crisitem.author.departamentoMatemáticas-
Appears in Collections:Artículos
Thumbnail
Adobe PDF (271,05 kB)
Show simple item record

SCOPUSTM   
Citations

5
checked on Sep 20, 2020

WEB OF SCIENCETM
Citations

5
checked on Sep 20, 2020

Page view(s)

20
checked on Sep 20, 2020

Download(s)

12
checked on Sep 20, 2020

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.