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Abstract

A natural generalization of the classical Moore-Penrose inverse is presented.
The so-called S-Moore-Penrose inverse of a m × n complex matrix A, de-
noted by A†S, is defined for any linear subspace S of the matrix vector space
Cn×m. The S-Moore-Penrose inverse A†S is characterized using either the sin-
gular value decomposition or (for the nonsingular square case) the orthogonal
complements with respect to the Frobenius inner product. These results are
applied to the preconditioning of linear systems based on Frobenius norm
minimization and to the linearly constrained linear least squares problem.

Keywords: Moore-Penrose inverse; Frobenius norm; S-Moore-Penrose
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1. Introduction

Let Cm×n (Rm×n) denote the set of all m × n complex (real) matrices.
Throughout this paper, the notations AT , A∗, A−1, r (A) and tr (A) stand
for the transpose, conjugate transpose, inverse, rank and trace of matrix A,
respectively. The general reciprocal was described by E. H. Moore in 1920 [1]
and independently rediscovered by R. Penrose in 1955 [2], and it is nowadays
called the Moore-Penrose inverse. The Moore-Penrose inverse of a matrix
A ∈ Cm×n (sometimes referred to as the pseudoinverse of A) is the unique
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matrix A† ∈ Cn×m satisfying the four Penrose equations

AA†A = A, A†AA† = A†,
(
AA†

)∗
= AA†,

(
A†A

)∗
= A†A. (1.1)

For more details on the Moore-Penrose inverse, see [3]. The pseudoinverse
has been widely studied during the last decades from both theoretical and
computational points of view. Some of the most recent works can be found,
e.g., in [4, 5, 6, 7, 8, 9, 10] and in the references contained therein.

As is well-known, the Moore-Penrose inverse A† can be alternatively de-
fined as the unique matrix that gives the minimum Frobenius norm among
all solutions to any of the matrix minimization problems

min
M∈Cn×m

‖MA− In‖F , (1.2)

min
M∈Cn×m

‖AM − Im‖F , (1.3)

where In denotes the identity matrix of order n and ‖·‖F stands for the
matrix Frobenius norm.

Also, the pseudoinverse of A can be defined via a limiting process as [11]

A† = lim
δ→0

A∗ (AA∗ + δIm)−1 = lim
δ→0

(A∗A+ δIn)−1A∗

and by the explicit algebraic expression [3]

A† = C∗ (CC∗)−1 (B∗B)−1B∗

based on the full rank factorization

A = BC, B ∈ Cm×r, C ∈ Cr×n, r (A) = r (B) = r (C) = r.

In particular, if A ∈ Cm×n has full row rank (full column rank, respec-
tively) then A† is simply the unique solution to problem (1.2) (to problem
(1.3), respectively), given by the respective explicit expressions [3]

A† =

{
(i) A∗ (AA∗)−1 iff r (A) = m,

(ii) (A∗A)−1A∗ iff r (A) = n,
(1.4)

so that A† is a right inverse (left inverse, respectively) of A if r (A) = m
(r (A) = n, respectively).
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A natural generalization of the Moore-Penrose inverse, the so-called left
or right S-Moore-Penrose inverse, arises simply by taking in Equations (1.2)
or (1.3), respectively, the minimum over an arbitrary matrix subspace S of
Cn×m, instead of over the whole matrix space Cn×m. This is the starting
point of this paper, that has been organized as follows.

In Section 2, we define the S-Moore-Penrose inverse and we provide an
explicit expression based on the singular value decomposition (SVD) of ma-
trix A, as well as an alternative expression for the nonsingular case, in terms
of the orthogonal complements with respect to the Frobenius inner product.
Next, in Section 3 we apply these results to the preconditioning of linear sys-
tems based on Frobenius norm minimization and to the linear least squares
problem subject to some linear restrictions. Finally, in Section 4 we present
our conclusions.

2. The S-Moore-Penrose inverse

Equations (1.2) and (1.3), regarding the least squares characterization of
the Moore-Penrose inverse, can be generalized as follows.

Definition 2.1. Let A ∈ Cm×n and let S be a linear subspace of Cn×m.
Then
(i) The left Moore-Penrose inverse of A with respect to S or, for short, the left
S-Moore-Penrose inverse of A, denoted by A†S,l, is the minimum Frobenius
norm solution to the matrix minimization problem

min
M∈S
‖MA− In‖F . (2.1)

(ii) The right Moore-Penrose inverse of A with respect to S or, for short,
the right S-Moore-Penrose inverse of A, denoted by A†S,r, is the minimum
Frobenius norm solution to the matrix minimization problem

min
M∈S
‖AM − Im‖F . (2.2)

Remark 2.1. Note that for S = Cn×m, the left and right S-Moore-Penrose
inverses become the Moore-Penrose inverse. That is, the left and right S-
Moore-Penrose inverses generalizes the definition, via the matrix minimiza-
tion problems (1.2) and (1.3), respectively, of the classical pseudoinverse.
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Moreover, when A ∈ Cn×n is nonsingular and A−1 ∈ S then the left and
right S-Moore-Penrose inverses are just the inverse. Briefly:

A†Cn×m,l = A† = A†Cn×m,r and A†S,l = A−1 = A†S,r for all S s.t. A−1 ∈ S.

Remark 2.2. In particular, if matrix A has full row rank, (full column rank,
respectively) then it has right inverses, (left inverses, respectively). Thus, due
to the uniqueness of the orthogonal projection of the identity matrix In (Im,
respectively) onto the matrix subspace SA ⊆ Cn×n (AS ⊆ Cm×m, respec-
tively), we conclude that, for these special cases, Definition 2.1 simply affirms
that A†S,l (A†S,r, respectively) is just the unique solution to problem (2.1) (to
problem (2.2), respectively). The following simple example illustrates this
fact.

Example 2.1. For n = m = 2 and

A =

(
1 1
2 0

)
, S = span

{(
1 0
0 0

)}
=

{(
α 0
0 0

)}
α∈C

,

on one hand, we have∥∥∥A†S,lA− I2∥∥∥2
F

= min
M∈S
‖MA− I2‖2F = min

α∈C
|α− 1|2 + |α|2 + 1,

so that

A†S,l =

(
1
2

0
0 0

)
,
∥∥∥A†S,lA− I2∥∥∥

F
=

3

2

and on the other hand, we have∥∥∥AA†S,r − I2∥∥∥2
F

= min
M∈S
‖AM − I2‖2F = min

α∈C
|α− 1|2 + |2α|2 + 1,

so that

A†S,r =

(
1
5

0
0 0

)
,
∥∥∥AA†S,r − I2∥∥∥

F
=

9

5
.

Remark 2.3. Example 2.1 illustrates three basic differences between the
Moore-Penrose and the S-Moore-Penrose inverses. First, we have that, in
general, A†S,l 6= A†S,r. Second, neither A†S,l, nor A†S,r satisfies, in general, none
of the Penrose equations (1.1). Finally, although matrix A has full rank,
neither A†S,l is a left inverse, nor A†S,r is a right inverse of matrix A.

4



Throughout this paper we address only the case of the right S-Moore-
Penrose inverse A†S,r, but analogous results can be obtained for the left S-

Moore-Penrose inverse A†S,l.

Next theorem provides us with an explicit expression for A†S,r from an
SVD of matrix A.

Theorem 2.1. Let A ∈ Cm×n and let S be a linear subspace of Cn×m. Let
A = UΣV ∗ be an SVD of matrix A. Then

A†S,r = V Σ†V ∗SU,rU
∗ and

∥∥∥AA†S,r − Im∥∥∥
F

=
∥∥∥ΣΣ†V ∗SU,r − Im

∥∥∥
F
. (2.3)

Moreover, ∥∥∥A† − A†S,r∥∥∥
F

=
∥∥∥Σ† − Σ†V ∗SU,r

∥∥∥
F
. (2.4)

Proof. For all M ∈ S, we have N = V ∗MU ∈ V ∗SU and M = V NU∗.
Using the invariance property of the Frobenius norm under multiplication by
unitary matrices, we get∥∥∥AM̃ − Im∥∥∥

F
= min

M∈S
‖AM − Im‖F = min

N∈V ∗SU
‖UΣV ∗V NU∗ − Im‖F

= min
N∈V ∗SU

‖U (ΣN − Im)U∗‖F = min
N∈V ∗SU

‖ΣN − Im‖F

=
∥∥∥ΣÑ − Im

∥∥∥
F
, (2.5)

that is, Ñ ∈ V ∗SU is a solution to the matrix minimization problem

min
N∈V ∗SU

‖ΣN − Im‖F (2.6)

if and only if M̃ = V ÑU∗ ∈ S is a solution to problem (2.2).

Now, let Ñ be any solution to problem (2.6). Since Σ†V ∗SU,r is the mini-
mum Frobenius norm solution to problem (2.6), we have∥∥∥Σ†V ∗SU,r

∥∥∥
F
≤
∥∥∥Ñ∥∥∥

F

and then, using again the fact that the Frobenius norm is unitarily invariant,
we have∥∥∥V Σ†V ∗SU,rU

∗
∥∥∥
F
≤
∥∥∥V ÑU∗∥∥∥

F
for any solution Ñ to problem (2.6), i.e.,
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∥∥∥V Σ†V ∗SU,rU
∗
∥∥∥
F
≤
∥∥∥M̃∥∥∥

F
for any solution M̃ to problem (2.2).

This proves that the minimum Frobenius norm solution A†S,r to problem

(2.2) is V Σ†V ∗SU,rU
∗, and the right-hand equality of Equation (2.3) immedi-

ately follows from Equation (2.5).
Finally, Equation (2.4) immediately follows using the well-known expres-

sion A† = V Σ†U∗ and the left-hand equality of Equation (2.3), that is,∥∥∥A† − A†S,r∥∥∥
F

=
∥∥∥V Σ†U∗ − V Σ†V ∗SU,rU

∗
∥∥∥
F

=
∥∥∥Σ† − Σ†V ∗SU,r

∥∥∥
F
. �

Remark 2.4. Formula (2.3) for the right S-Moore-Penrose inverse general-
izes the usual expression for the Moore-Penrose inverse in terms of an SVD
of A, since (see Remark 2.1)

S = Cn×m ⇒ V ∗SU = Cn×m ⇒ A† = A†S,r = V Σ†V ∗SU,rU
∗ = V Σ†U∗.

For nonsingular square matrices, the next theorem provides an expression
for A†S,r involving the orthogonal complement of subspace S (denoted, as

usual, by S⊥) with respect to the Frobenius inner product 〈· , ·〉F . This
expression generalizes Equation (1.4)-(ii).

Theorem 2.2. Let A ∈ Cn×n with r (A) = n and let S be a linear subspace
of Cn×n. Then

A†S,r = (A∗A)−1 (A∗ +Q) , for some Q ∈ S⊥. (2.7)

Proof. Since AA†S,r is the orthogonal projection of the identity matrix onto
the subspace AS, we have

AA†S,r − In ∈ (AS)⊥ . (2.8)

Now, for all M ∈ S and for all N ∈ S⊥ we have〈
AM,

(
A−1

)∗
N
〉
F

= tr
(
AMN∗A−1

)
= tr

(
A−1AMN∗

)
= 〈M,N〉F = 0

and this proves the inclusion (A−1)
∗
S⊥ ⊆ (AS)⊥. Moreover, since A and

(A−1)
∗

are nonsingular, we have

dim
(

(AS)⊥
)

= n2−dim (AS) = n2−dim (S) = dim
(
S⊥
)

= dim
((
A−1

)∗
S⊥
)
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and this proves the set equality

(AS)⊥ =
(
A−1

)∗
S⊥. (2.9)

Finally, using Equations (2.8) and (2.9), we get

AA†S,r − In =
(
A−1

)∗
Q, for some Q ∈ S⊥, i.e.,

A†S,r = (A∗A)−1 (A∗ +Q) , for some Q ∈ S⊥. �

An example where Theorem 2.2 can be applied is given in the next corol-
lary.

Corollary 2.1. Let A ∈ Cn×n with r (A) = n. Let s ∈ Cn − {0} and let
[0/s] be the annihilator subspace of s in Cn×n, i.e.,

[0/s] =
{
M ∈ Cn×n |Ms = 0} .

Then
A†[0/s],r = A−1

(
In − ‖s‖−22 ss∗

)
, (2.10)

where ‖·‖2 stands for the usual vector Euclidean norm.

Proof. Using Equation (2.7) for S = [0/s], we have

A†[0/s],r = (A∗A)−1 (A∗ +Q) , for some Q ∈ [0/s]⊥

and since the orthogonal complement of the annihilator subspace [0/s] is
given by [12]

[0/s]⊥ = {vs∗ | v ∈ Cn} ,
we get

A†[0/s],r = (A∗A)−1 (A∗ + vs∗) , for some v ∈ Cn. (2.11)

Multiplying both sides of Equation (2.11) by vector s, we get

A†[0/s],rs = (A∗A)−1 (A∗ + vs∗) s

and, since A†[0/s],r ∈ [0/s], we get

0 = (A∗ + vs∗) s ⇒ v = − 1

‖s‖22
A∗s

and substituting v by its above expression in Equation (2.11), we get

A†[0/s],r = (A∗A)−1
(
A∗ − 1

‖s‖22
A∗ss∗

)
= A−1

(
In − ‖s‖−22 ss∗

)
. �
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Remark 2.5. Writing Equation (2.10) as

A†[0/s],r = A†
(
In −

ss∗

s∗s

)
,

we have a representation of the left S-Moore-Penrose inverse of A (S being
the annihilator subspace [0/s] of s) as the product of the Moore-Penrose
inverse of A and the elementary annihilator In − ss∗

s∗s
of vector s.

Regarding the full column rank case (A ∈ Cm×n, r (A) = n), let us men-
tion that, in addition to formulas (2.3) and (2.7), other explicit expressions
for A†S,r -more appropriate for computational purposes- can be given using an
arbitrary basis of subspace S. The basic idea simply consists of expressing
the orthogonal projection AA†S,r of Im onto the subspace AS by its expansion
with respect to an orthonormal basis of AS (after using the Gram-Schmidt
orthonormalization procedure, if necessary). These expressions have been
developed in [13] for the special case of real n× n nonsingular matrices, and
they have been applied to the preconditioning of large linear systems and il-
lustrated with some numerical experiments corresponding to real-world cases.

The next two lemmas state some spectral properties of the matrix product
AA†S,r that will be used in the next section.

Lemma 2.1. Let A ∈ Cm×n and let S be a linear subspace of Cn×m. Then∥∥∥AA†S,r − Im∥∥∥2
F

= m− tr
(
AA†S,r

)
, (2.12)

∥∥∥AA†S,r∥∥∥2
F

= tr
(
AA†S,r

)
. (2.13)

Proof. Using the fact that AA†S,r is the orthogonal projection of the identity
onto the matrix subspace AS, we have〈

AA†S,r − Im, AM
〉
F

= 0, for all M ∈ S

and, in particular, for M = A†S,r we have〈
AA†S,r − Im, AA

†
S,r

〉
F

= 0
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and then we get, on one hand,∥∥∥AA†S,r − Im∥∥∥2
F

=
〈
AA†S,r − Im, AA

†
S,r

〉
F

+
〈
Im − AA†S,r, Im

〉
F

= m− tr
(
AA†S,r

)
and, on the other hand,∥∥∥AA†S,r∥∥∥2

F
=
〈
AA†S,r, AA

†
S,r

〉
F

=
〈
AA†S,r, Im

〉
F

= tr
(
AA†S,r

)
. �

Lemma 2.2. Let A ∈ Cm×n and let S be a linear subspace of Cn×m. Let
{λi}mi=1 and {σi}mi=1 be the sets of eigenvalues and singular values, respec-

tively, of matrix AA†S,r arranged, as usual, in nonincreasing order of their
modules. Then

m∑
i=1

σ2
i =

m∑
i=1

λi ≤ m. (2.14)

Proof. Taking into account that∥∥∥AA†S,r∥∥∥2
F

= tr
(
AA†S,r

(
AA†S,r

)∗)
=

m∑
i=1

σ2
i , tr

(
AA†S,r

)
=

m∑
i=1

λi

and using Equations (2.12) and (2.13), the proof is concluded. �

3. Applications

3.1. Applications to preconditioning

In numerical linear algebra, the convergence of the iterative Krylov meth-
ods [14, 15, 16] used for solving the linear system

Ax = b, A ∈ Rn×n, A nonsingular, x, b ∈ Rn×1 (3.1)

can be improved by transforming it into the right preconditioned system

AMy = b, x = My. (3.2)

The approximate inverse preconditioning (3.2) of system (3.1) is per-
formed in order to get a preconditioned matrix AM as close as possible to
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the identity in some sense, taking into account the computational cost re-
quired for this purpose. The closeness of AM to In may be measured by
using a suitable matrix norm like, for instance, the Frobenius norm. In this
way, the optimal (in the sense of the Frobenius norm) right preconditioner of
system (3.1), among all matrices M belonging to a given subspace S of Rn×n,
is precisely the right S-Moore-Penrose inverse A†S,r, i.e., the unique solution
to the matrix minimization problem (Remark 2.2)

min
M∈S
‖AM − In‖F , A ∈ Rn×n, r (A) = n, S ⊆ Rn×n. (3.3)

Alternatively, we can transform system (3.1) into the left preconditioned
system MAx = Mb, which is now related to the left S-Moore-Penrose inverse
A†S,l.

In the next theorem, we apply the spectral property (2.14) to the special
case of the optimal preconditioner A†S,r, i.e., the solution to problem (3.3).

We must assume that matrix A†S,r is nonsingular, in order to get a nonsin-

gular coefficient matrix AA†S,r of the preconditioned system (3.2). Hence, all

singular values of matrix AA†S,r will be greater than zero, and they will be
denoted as

σ1 ≥ σ2 ≥ · · · ≥ σn > 0.

Theorem 3.1. Let A ∈ Rn×n be nonsingular and let S be a vector subspace
of Rn×n such that the solution A†S,r to problem (3.3) is nonsingular. Then

the smallest singular value σn of the preconditioned matrix AA†S,r lies in the
interval (0, 1]. Moreover, we have the following lower and upper bounds on
the distance d (In, AS)

(1− σn)2 ≤
∥∥∥AA†S,r − In∥∥∥2

F
≤ n

(
1− σ2

n

)
. (3.4)

Proof. Using Lemma 2.2 for m = n, we get

nσ2
n ≤

n∑
i=1

σ2
i ≤ n ⇒ σ2

n ≤ 1 ⇒ σn ≤ 1.

To prove the left-hand inequality of Equation (3.4), we use the well-known
fact that singular values continuously depend on their arguments [17], i.e.,
for all A,B ∈ Rn×n and for all i = 1, 2, . . . , n

|σi (A)− σi (B)| ≤ ‖A−B‖F ⇒ |σn − 1| ≤
∥∥∥AA†S,r − In∥∥∥

F
.
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Finally, to prove the right-hand inequality of Equation (3.4), we use Equa-
tions (2.12) and (2.13) for m = n∥∥∥AA†S,r − In∥∥∥2

F
= n−tr

(
AA†S,r

)
= n−

∥∥∥AA†S,r∥∥∥2
F

= n−
n∑
i=1

σ2
i ≤ n

(
1− σ2

n

)
.�

Remark 3.1. Equation (3.4) states that
∥∥∥AA†S,r − I∥∥∥

F
decreases to 0 at

the same time as the smallest singular value σn of the preconditioned matrix
AA†S,r increases to 1. That is, the closeness of AA†S,r to the identity is deter-
mined by the closeness of σn to the unity. In the extremal case, σn = 1 iff
A†S,r = A−1 iff A−1 ∈ S. A more complete version of Theorem 3.1, involving
not only the smallest singular value, but also the smallest eigenvalue’s mod-
ulus, of the preconditioned matrix, can be found in [18]. The proof presented
here is completely different, more direct and simpler than the one given in
[18].

Remark 3.2. In numerical linear algebra, the theoretical effectiveness anal-
ysis of the preconditioners M to be used, is based on the spectral properties
of the preconditioned matrix AM (e.g., condition number, clustering of eigen-
values and singular values, departure from normality, etc.). For this reason,
the spectral properties of matrix AA†S,r, stated in Lemmas 2.1 and 2.2 and
in Theorem 3.1, are especially useful when the left S-Moore-Penrose inverse
is the optimal preconditioner A†S,r defined by problem (3.3). We refer the
reader to [18] for more details about the theoretical effectiveness analysis of
these preconditioners.

3.2. Applications to the constrained least squares problem

The S-Moore-Penrose inverse can be applied to the linear least squares
problem subject to a set of homogeneous linear constraints. This is in ac-
cordance with the well-known fact that the Moore-Penrose inverse can be
applied to the linear least squares problem without restrictions [19], the ma-
jor application of the Moore-Penrose inverse [20]. More precisely, let us recall
that, regarding the linear system Ax = b, A ∈ Rm×n, the unique solution (if
A has full column rank) or the minimum norm solution (otherwise) of the
least squares problem

min
x∈Rn
‖Ax− b‖2

is given by
x̄ = A†b.
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Here we consider as well the linear system Ax = b, A ∈ Rm×n, but now
subject to the condition x ∈ T , where T is a given vector subspace of Rn.
Denoting by Bx = 0 the system of Cartesian equations of subspace T , this
problem is usually formulated as

min
x∈Rn
‖Ax− b‖2 subject to Bx = 0 (3.5)

and we refer the reader to [11] and to the references contained therein, for
more details about the linearly constrained linear least squares problem.

Next theorem provides us with a new, different approach -in terms of the
S-Moore-Penrose inverse- to problem (3.5). Our theorem covers all possible
situations that one can imagine for both the full rank and the rank deficient
cases, e.g., Ax = b consistent but Ax = b, x ∈ T inconsistent; Ax = b
consistent and underdetermined while Ax = b, x ∈ T consistent and uniquely
determined; both Ax = b and Ax = b, x ∈ T inconsistent, etc.

Theorem 3.2. Let A ∈ Rm×n and b ∈ Rm. Let T be a linear subspace of Rn

of dimension p. Then the minimum norm solution to the constrained least
squares problem

min
x∈T
‖Ax− b‖2 (3.6)

is given by
x̄T = A†SP ,r

b, (3.7)

where P is the n × p matrix whose columns are the vectors of an arbitrary
basis of T and SP = PRp×m ⊆ Rn×m. In particular, if A has full column
rank then x̄T is the unique least squares solution to problem (3.6).

Proof. Let B = {v1, . . . , vp} be a given orthonormal basis of T and let P
be the n × p matrix whose columns are v1, . . . , vp. For a clearer exposition,
we subdivide the proof into the following three parts.
(i) Writing any vector x ∈ T as x = Pα (α ∈ Rp), we get

‖Ax̃− b‖2 = min
x∈T
‖Ax− b‖2 = min

α∈Rp
‖(AP )α− b‖2 = ‖(AP ) α̃− b‖2 ,

that is, α̃ ∈ Rp is a solution to the unconstrained least squares problem

min
α∈Rp
‖(AP )α− b‖2 (3.8)
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if and only if x̃ = Pα̃ ∈ T is a solution to the constrained least squares
problem (3.6).

Now, let α̃ be any solution to problem (3.8). Since ᾱ = (AP )† b is the
minimum norm solution to problem (3.8), we have∥∥∥(AP )† b

∥∥∥
2
≤ ‖α̃‖2

and then, using the fact that P has orthonormal columns
(
P TP = Ip

)
, we

have
‖Pα‖22 = (Pα)T (Pα) = αTα = ‖α‖22 for all α ∈ Rp

and then∥∥∥P (AP )† b
∥∥∥
2
≤ ‖Pα̃‖2 for any solution α̃ to problem (3.8), i.e.,∥∥∥P (AP )† b
∥∥∥
2
≤ ‖x̃‖2 for any solution x̃ to problem (3.6).

This proves that the minimum norm solution x̄T to problem (3.6) can be
expressed as

x̄T = P (AP )† b for any orthonormal basis B of T. (3.9)

(ii) Writing any matrix M ∈ SP = PRp×m as M = PN (N ∈ Rp×m), we get∥∥∥AM̃ − Im∥∥∥
F

= min
M∈SP

‖AM − Im‖F

= min
N∈Rp×m

‖(AP )N − Im‖F =
∥∥∥(AP ) Ñ − Im

∥∥∥
F
,

that is, Ñ ∈ Rp×m is a solution to the unconstrained matrix minimization
problem

min
N∈Rp×m

‖(AP )N − Im‖F (3.10)

if and only if M̃ = PÑ ∈ SP is a solution to the constrained matrix mini-
mization problem

min
M∈SP=PRp×m

‖AM − Im‖F (3.11)

Now, let Ñ be any solution to problem (3.10). Since (AP )† is the mini-
mum Frobenius norm solution to problem (3.10), we have
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∥∥∥(AP )†
∥∥∥
F
≤
∥∥∥Ñ∥∥∥

F

and then, using again the fact that P has orthonormal columns
(
P TP = Ip

)
,

we have

‖PN‖2F = tr
(

(PN)T (PN)
)

= tr
(
NTN

)
= ‖N‖2F for all N ∈ Rp×m

and then∥∥∥P (AP )†
∥∥∥
F
≤
∥∥∥PÑ∥∥∥

F
for any solution Ñ to problem (3.10), i.e.,∥∥∥P (AP )†

∥∥∥
F
≤
∥∥∥M̃∥∥∥

F
for any solution M̃ to problem (3.11).

This proves that the minimum Frobenius norm solution A†SP ,r
to problem

(3.11) can be expressed as

A†SP ,r
= P (AP )† for any orthonormal basis B of T. (3.12)

(iii) Using Equations (3.9) and (3.12), we get

x̄T = A†SP ,r
b for any orthonormal basis B of T. (3.13)

To conclude the derivation of formula (3.7), we must proof that, although
the assumption thatB is an orthonormal basis of T is (in general) essential for
Equations (3.9) and (3.12) to be hold, formula (3.13) for x̄T is valid not only
for orthonormal bases, but in fact for any basis (not necessarily orthonormal)
of subspace T . In other words, the vector A†SP ,r

b is independent of the chosen
basis. Indeed, let B, B′ be two arbitrary bases of T and let P, P ′ be the n×p
matrices whose columns are the vectors of B and B′, respectively. Writing
matrix P ′ as P ′ = PC, C being a p× p nonsingular matrix, we have

SP ′ = P ′Rp×m = P
(
CRp×m) = PRp×m = SP ⇒ A†SP ,r

b = A†SP ′ ,r
b.

Finally, if in particular A has full column rank then A is left invertible
and, due to the uniqueness of the orthogonal projection Ax̄T of vector b
onto the subspace AT ⊆ Rm, we derive that the minimum norm solution
x̄T = A†SP ,r

b to problem (3.6) is indeed the unique solution to this problem.�
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Remark 3.3. In particular, for the special full rank case r (A) = n, the
expression (3.9) for the unique least squares solution x̄T of problem (3.6), is
valid for any basis (not necessarily orthonormal) of T . Indeed, let B, B′ be
two arbitrary bases of T and let P, P ′ be the n× p matrices whose columns
are the vectors of B and B′, respectively. Writing matrix P ′ as P ′ = PC, C
being a p× p nonsingular matrix, we have

P ′ (AP ′)
†

= PC ((AP )C)† = PCC† (AP )† = PCC−1 (AP )† = P (AP )† ,

where the reverse order law for the product (AP )C holds because AP has
full column rank, i.e.,

p = r (A) + r (P )− n ≤ r (AP ) ≤ min (r (A) , r (P )) = p

and C has full row rank; see, e.g., [3]. In conclusion, the minimum norm
solution to problem (3.6) is given by

x̄T = P (AP )† b

{
for any orthonormal basis of T if r (A) < n,

for any basis of T if r (A) = n

and also, for both cases (r (A) ≤ n), by x̄T = A†SP ,r
b for any basis of T .

The following simple example illustrates Theorem 3.2.

Example 3.1. Let A = (1 1 1) ∈ R1×3 and b = (2) ∈ R1×1. Consider the
subspace T ≡ x3 = 0 of R3. Then m = 1, n = 3, p = 2 and taking the
(nonorthonormal) basis of T : B = {(1, 0, 0) , (1, 1, 0)}, we get

P =

 1 1
0 1
0 0

⇒ SP = PR2×1 =


 a

b
0


a,b∈R

⊂ R3×1 ⇒ A†SP ,r
=

 1/2
1/2
0


and then the minimum norm solution to problem (3.6) is given by

x̄T = A†SP ,r
b =

 1
1
0

 .
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4. Concluding remarks

The left and right S-Moore-Penrose inverses, A†S,l and A†S,r, extend the
idea of the standard inverse from nonsingular square matrices not only to
rectangular and singular square matrices (as the Moore-Penrose inverse does),
but also to invertible matrices, themselves, by considering a subspace S of
Cn×m not containing A−1. Restricted to the right case, we have expressed
A†S,r using either an SVD of A or (for the nonsingular case) the orthogonal

complements with respect to the Frobenius inner product. A†S,r can be seen

as an useful alternative to A†: It provides us with a computationally feasible
approximate inverse preconditioner for large linear systems (in contrast to
the unfeasible computation of A† = A−1), and it also provides the minimum
norm solution A†SP ,r

b to the least squares problem subject to homogeneous

linear constraints (in contrast to the minimum norm solution A†b to the un-
constrained least squares problem). The behavior of the S-Moore-Penrose
inverse with respect to both theoretical results and other applications, al-
ready known for the Moore-Penrose inverse, can be considered for future
researches.
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