Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/147317
Título: Forecasting Sea Surface Temperature from Satellite Images with Graph Neural Networks
Autores/as: Cuervo-Londoño, Giovanny A.
Sánchez, Javier 
Rodríguez-Santana, Ángel 
Clasificación UNESCO: 3304 Tecnología de los ordenadores
2510 Oceanografía
Palabras clave: Graph neural network
Deep learning
Remote sensing
Forecasting
Oceanography
Fecha de publicación: 2025
Editor/a: Springer 
Conferencia: 21st International Conference in Computer Analysis of Images and Patterns (CAIP 2025) 
Resumen: Predicting the evolution of sea surface temperature (SST) is essential for applications in weather forecasting, maritime transport, and fisheries. Traditional ocean forecasting methods rely on physics-based numerical models, which face challenges such as data gaps, assimilation difficulties, and computational inefficiencies. Recent advances in Graph Neural Networks (GNNs) have shown promise in improving prediction accuracy and efficiency. In this work, we adapt a GNN model, initially designed for atmospheric forecasting, to oceanographic applications. We focus on the Canary Islands and the northwest African shore regions characterized by strong mesoscale dynamics. Our approach introduces a spatially masked loss function to address ocean-specific challenges like spatial discontinuities and observational data sparsity. We train our model using the L4 SST satellite images dataset from Copernicus Marine Service and compare its performance with state-of-the-art ConvLSTM-based models. Our results indicate that the adapted GNN model effectively captures mesoscale structures and outperforms ConvLSTM in both computational efficiency and accuracy. These findings suggest that graph-based deep learning approaches can overcome key limitations of current oceanographic models and provide a more flexible and scalable solution for forecasting oceanographic variables from satellite images.
URI: https://accedacris.ulpgc.es/jspui/handle/10553/147317
ISBN: 978-3-032-05059-5
ISSN: 0302-9743
DOI: 10.1007/978-3-032-05060-1_28
Fuente: Computer Analysis of Images and Patterns: 21st International Conference (CAIP 2025), [ISBN 978-3-032-05059-5], Las Palmas de Gran Canaria, 22-25 septiembre 2025
Colección:Actas de congresos
pdf
Adobe PDF (4,02 MB)
pdf
Adobe PDF (4,86 MB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.