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Abstract. Predicting the evolution of sea surface temperature (SST) is
essential for applications in weather forecasting, maritime transport, and
fisheries. Traditional ocean forecasting methods rely on physics-based
numerical models, which face challenges such as data gaps, assimilation
difficulties, and computational inefficiencies. Recent advances in Graph
Neural Networks (GNNs) have shown promise in improving prediction
accuracy and efficiency. In this work, we adapt a GNN model, initially
designed for atmospheric forecasting, to oceanographic applications. We
focus on the Canary Islands and the northwest African shore regions
characterized by strong mesoscale dynamics. Our approach introduces a
spatially masked loss function to address ocean-specific challenges, such
as spatial discontinuities and observational data sparsity. We train our
model using the L4 SST satellite images dataset from Copernicus Marine
Service and compare its performance with state-of-the-art ConvLSTM-
based models. Our results indicate that the adapted GNN model ef-
fectively captures mesoscale structures and outperforms ConvLSTM in
both computational efficiency and accuracy. These findings suggest that
graph-based deep learning approaches can overcome key limitations of
current oceanographic models and provide a more flexible and scalable
solution for forecasting oceanographic variables from satellite images.

Keywords: Graph neural network - Deep learning - Remote sensing -
Forecasting - Oceanography.

1 Introduction

Forecasting the evolution of oceanographic data obtained from satellite images
is necessary for tasks related to weather prediction, maritime transport, and
the fishery industry [2], among others. It relies heavily on forecasting mesoscale
processes due to their environmental and economic impacts. These processes,
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which give rise to distinct structures, also influence mean currents and transport
key ocean properties. Despite its importance, predicting mesoscale processes
remains a challenging task [10].

Traditional ocean forecasting systems rely on numerical models that use
physics-based equations, although they have several limitations. Gaps in obser-
vational data and ongoing challenges with current data assimilation techniques
make it difficult to get a complete picture of the ocean. Additionally, these mod-
els do not fully leverage historical data or take advantage of modern hardware
like GPUs, making them less efficient.

Deep learning models have recently emerged in global atmospheric forecast-
ing, considerably improving the performance of numerical systems. There have
appeared numerous models for predicting the state of the atmosphere, such as
Pangu Weather [3], GraphCast [9], Aurora [4], NeuralGCM [8], or Gencast [11],
which rely on foundational models, graph neural architectures, or diffusion mod-
els. These have considerably reduced inference times and computational costs.

These models rely on high-quality data but struggle with inconsistent, sparse,
or noisy datasets, which can limit their accuracy. They also suffer from spectral
bias in the long run, leading to numerical instability or unrealistic predictions.
While these models work well for atmospheric systems, applying them to ocean
data is more challenging because of the atmospheric interference and landmasses.
Nevertheless, some models have recently appeared for predicting the ocean dy-
namics, such as Xihe [13], designed for global predictions, or SeaCast [7] and
OceanNet [5], with a focus on regional forecasting.

Forecasting SST in coastal regions like the Canary Islands and northwestern
Africa is crucial due to its significant implications for marine ecology, weather
prediction, and fisheries. While prior deep learning approaches have shown strong
results in atmospheric forecasting, regional oceanographic forecasting remains
relatively unexplored.

In this work, we adapt a graph neural network [9], initially designed for at-
mospheric systems, to oceanographic forecasting. To tailor our model for this
task, we adapt the underlying graph to a subregional domain and introduce
a spatially masked loss function optimization that targets oceanic regions and
prevents land-related artifacts during training. This approach differs from con-
ventional methods, which are typically applied before training. By restricting
loss computation to oceanic zones, we explore whether it can mitigate spectral
bias by forcing the model to learn in selected marine areas during training.

Our study focuses on the Canary Islands and the northwest African shore
subregion, which presents several challenges due to the oceanic and coastal in-
teractions [12]. Traditional methods struggle to represent these interactions due
to the highly nonlinear processes caused by strong mesoscale, upwelling fronts,
and complex eddy fields. We use the L4 satellite-derived SST dataset [6] from
the Copernicus Marine Service (CMEMS) for the Atlantic Ocean around Iberia,
Biscay, and Ireland (IBI), limited to the Canary Islands subdomain. This dataset
comprises nearly 40 years of daily SST satellite images from 1982 to 2020, with
a resolution of 5.55 km per pixel.
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By comparing our model to a state-of-the-art model, such as ConvLSTM [14],
we assess the benefits and drawbacks of GNNs and how they can better capture
these unresolved dynamics and offer greater flexibility. Additionally, we evaluate
the model’s sensitivity to mesoscale processes of high-dynamical complexity ar-
eas, such as frontal zones near the islands and African capes. The experimental
results show that our model surpasses ConvLSTMs in computational efficiency
and accuracy. We evaluate its performance in short- and long-range predictions,
emphasizing its spatial behavior in our study area.

Our work introduces three main contributions: i) it adapts a global GNN for
subregional SST forecasting; ii) it introduces a spatially masked loss function to
target only oceanic areas, avoiding land artifacts; iii) the experiments evaluate
mesh resolution trade-offs concerning both accuracy and computational cost.

Section 2 explains the dataset and the study area of this work. Section 3
details the architecture of our graph neural network. The experimental results
(Section 5) evaluate and compare the model’s performance with ConvLSTM.
Finally, Section 6 discusses the contributions and limitations of this work and
proposes future research directions.

2 Dataset and Study Area

This study focuses on the Canary Islands and the Moroccan subregion, which
extends from 21°S to 33°N; see Fig. 1. This region has strong upwelling due to
wind and seabed shape, bringing cold water and nutrients to the surface. The
capes push coastal currents offshore, forming filaments that move water into the
ocean. Irregular seabed modifies currents, creating cyclonic eddies and boosting
marine life.

We use the L4 SST dataset [6] from the Copernicus Marine Service (CMEMS)
for the Atlantic Ocean around Iberia, Biscay, Ireland (IBI), and the northwestern
European shelf domain; see Fig. 1 on the left. It comprises nearly 40 years of SST
satellite images from 1982 to 2020, providing a gap-free daily SST estimate, using
multiple satellite observations and ensuring temporal consistency. The image
resolution is about 0.05 degrees (= 5.55 km per pixel).

Our study area is a subdomain within the IBI region, ranging from 19.55°
to 34.525° latitude and -20.97° to -5.975° longitude, covering an area of approx-
imately 2,462,475 km?; see Fig. 1 on the right. This region is represented by a
grid of 300 x 300 cells. The temporal range of the data used spans from January
1, 1982, to December 31, 2020, corresponding to a total of 14,245 frames (daily
images) and a storage size of 10.25 GB.

We preprocessed the dataset to fill in missing values by first generating a
binary land-sea mask, smoothed using a Gaussian filter. Then, we replaced the
missing values in the continent with the average SST to maintain data continuity.
This information is used as boundary conditions for our method. Figure 2 shows
several samples of the L4 dataset in 2020.



4 G. A. Cuervo-Londortio et al.

Fig. 1. Iberia, Biscay, and Ireland (IBI) region represented in the L4 dataset on the
left and the subregion we use in this work on the right, comprising the Canary Islands,
Madeira, and the northwestern African shore.
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Fig. 2. Several samples of the L4 dataset. These images are examples of the SST on
different days of 2020, corresponding to January, April, July, and October, respectively.
Colors represent the sea surface temperature in °C, with bright colors representing
higher temperatures.

3 Forecasting with Graph Neural Networks

Graph Neural Networks (GNN) are an efficient mechanism to model dependen-
cies based on the geometry of the problem. This section explains our adaptation
of a GNN architecture, based on the GraphCast [9] model, for regional oceano-
graphic forecasting. On the one hand, we limit the number of variables to the
SST and replace the original graph with a planar mesh, which reduces the com-
plexity of the model and increases the computational efficiency. On the other
hand, we adjust the latent size of the features in each node to reduce memory
requirements.

The input variable is a spatiotemporal volume, represented as x : R3 — R.

t is a scalar value, with 4 standing for node v; € V9, and t the time instant.

€T
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Our GNN is defined as an autoregressive model,
&1 = [, x ), &

where %*T1 is estimated from two previous values and can be fed into the model
to predict future states. The graph, G(V9, V™, Em £92™ £m29) is composed of
grid nodes, V9, mesh nodes, V™, bidirectional edges connecting mesh nodes, £,
and directed edges from grid to mesh nodes, £92™, and vice-versa, £™29.

Grid nodes are defined as v = [z}, 2!~ 171 £F £17! ¢/, i.e., a combination
of current and past SST values, temporal forcings, and static properties depend-
ing on spatial coordinates. Temporal forcings depend on the local time of day
and the year progress, and constants on a binary land-sea mask and the node
position.

Mesh nodes are defined as vi* = [cos(¢;),sin(\;), cos(A;)], with ¢; and X,
the longitude and latitude of node i, respectively. Mesh edges are defined as
e, = [distance(s,7),ps — Pr], i.e., the edge length and the difference between
the spatial locations of the sender node, mathbfps, to the receiver node, p,.
Unidirectional edges from the grid to the mesh, eg,%nm, and vice-versa, e??fg , are

similarly defined. A mesh representation is shown in Fig. 3.
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Fig. 3. The mesh nodes are organized into three distinct resolution levels: the finest
level on the left (M?, green) consists of 56 nodes, the intermediate level in the middle
(M*, blue) includes 16 nodes, and the coarsest level on the right (M°, red) comprises
9 nodes.

The architecture of the GNN is composed of an encoder that converts the in-
put data from the grid to the mesh, a processor that comprises multiple message-
passing layers, and a decoder that converts the output data from the mesh to
the grid; see Fig. 4. The encoder embeds the variables, v/, v, e, eg?;n and
€29 into the latent space as

s,r

¥ = MLPys (v?); ¥ = MLPym (vI") (2)

89" = MLPgo2m (€95™); €729 = MLPgmz2y (e]'29); €', = MLPgm (el'.);  (3)

,T
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inputs Graph Neural Network outputs
s = \( \(

)\ Processor J\_ Decoder

t—1 ¢ t+1 t+2 t+n

Fig. 4. Diagram of the encoder-processor-decoder architecture. The SST data is em-
bedded in the mesh through the encoder, the processor transforms node features using
multiple graph layers, and the decoder converts the internal mesh representation into
a future SST forecast.

with MLP a multi-layer perceptron. The information is then transferred to the
mesh using interaction networks (IN) [1], as follows:

d&?2" = MLPgon ([8227,8%,1™]); A9} = MLPym ([, Y &27)), (4)

sEVIr=y"

with s the sender node, r the receiver node, and [.] the concatenation of multiple
features. Grid nodes are also updated as

dv? = MLPy, (VY), (5)
In the final step of the encoder, we use residual connections as
VY VAV T V4 AV 82— 89 4 dedy". (6)

The processor contains various layers with the same mesh structure, whose
parameters are calculated through message-passing. The edge and node features
are updated as

&), = MLPgn ([8],,s™,r™)); d¥]" = MLPym ([%", Y &%), (7)
SEVTir=vi"

with sender, s, and receiver, r, nodes in the mesh in this case, and they are
updated with residual connections:

T 4 A & &+ de (8)

The decoder performs the inverse operation to the encoder. The edge and
node features are calculated with the following expressions:
~ ~ ~ ~ T m2g
d&]"?? = MLPgma ([81'79,8™,19)); d¥) = MLPyo ([77, Y de,,’]). (9)
seVaIr=v?
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A residual connection is used to update the information of the grid nodes
coming from the embedding in the encoder v <+ ¥¢ + d¥/, and the output
prediction is obtained with another MLP as y* = MLPy, (vY). Finally, the fore-
casting is obtained through a residual connection as %'+! = x! + §*. All input
variables are normalized to zero mean and unit variance. The size of the output
layer in the last MLP, corresponding to the decoder, is one for the prediction of

the value of the SST at each node.

4 Model Configuration and Training Details

The dataset was split by years from 1982 to 2012 in the training set, from 2013
to 2016 in the validation set, and from 2017 to 2020 in the test set, with approx-
imately a ratio of 80%-10%-10%. The training phase followed the methodology
explained in [9]. It involved 150 epochs with a half-cosine learning rate decay,
starting at 1073. The model was trained to predict one lead time using three-
time-instant samples. We used the AdamW optimizer with 81 = 0.9, 85 = 0.95,
e = 1078, and A = 0.1. We also implemented gradient clipping when its norm
was bigger than 32.

After an extensive hyperparameter search, we selected a configuration for the
GNN model based on the model accuracy and our computational resources. We
employed a three-level mesh as shown in Fig. 3. The processor module performed
6 message-passing steps within an 8-dimensional MLP latent space, with all
MLPs containing a single hidden layer.

We used the Mean Square Error (MSE) to optimize the neural network,
weighted by latitude to compensate for the spherical geometry of the grid cells.
The loss function is given by:

Lyse = ﬁ > w (& — zt)’

v; €G
where |G| is the number of grid nodes, v is a node of the grid, and wy =
cos(¢)/ (\%I > cos(d))) is a spatial varying weight that depends on the latitude
¢. This weight decreases as we move towards the poles to account for smaller
cell sizes.

We conducted experiments and hyperparameter search in a server equipped
with 8 Quadro RTX 4000 GPUs (8 GB each). We used the Distributed Data-
Parallel (DDP) approach for parallel training, with each GPU maintaining a copy
of the model and processing independent batches, synchronizing gradients across

devices through an all-reduce operation. This hybrid parallel-serial approach
ensured efficient training while fully utilizing our hardware resources.

5 Results

In this section, we assess the performance of our model and compare it with
state-of-the-art models. Table 1 shows the RMSE obtained for different hyper-
parameters. We test the mesh resolution using three configurations (M?2, M*,
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and M), various latent sizes, and several message passing steps in the processor.
The batch size was 16 in all experiments. We observe that the RMSE is low for
the three configurations; thus, it does not depend on the mesh resolution. The
accuracy for M? and M is similar, although the latter is more computationally
demanding since the mesh contains exponentially more nodes. This is reasonable
since the input data resolution is low, and M? seems to contain enough nodes
to represent the input data.

Table 1. Comparison of the Root Mean Squared Error (RMSE) depending on the
latent size, the number of resolution levels (M2, M*, and MG), and the number of
message-passing steps. Bold letters indicate the two most accurate solutions.

Configuration Latent-Size Message-Passing RMSE (°C)

2 2 0.0317
0.0296
0.0294

0.0323
0.0301
0.0299

0.0319
0.0293

GNN model (M?)

4
8
2
GNN model (M*) 4
8
2
4

AN [ TON| IO

GNN model (M?)

On the other hand, we observe an improvement when we increase the latent
size and the number of message-passing steps. In this case, a latent size of eight
seems the best value for an internal representation of the SST. In the work
proposed in [9], the latent size was much bigger, according to the number of
input variables. The difference between six and seven message-passing steps is
low, so we retain the configuration with M2, a latent size of eight, and six
message-passing steps.

Figure 5 compares the predictions of our model with the ground truth values
for five- to twenty-day forecasts. We observe that the error is low in short-time
predictions and increases with longer predictions. As we observed in the 15- and
20-day forecasts, the method is very accurate in the deep sea and less accurate
near the shore, where the temperature varies significantly.

Next, we compare our model with a state-of-the-art method based on the
ConvLSTM architecture [14]. This model was trained with an input image of
dimensions 256 x 256, and was optimized with the AdamW optimizer, a learning
rate of 1072, a weight decay of 0.1, and 150 epochs.

Figure 6 shows the average RMSE of both models for 20-day forecasts. We
calculated 20 predictions for each sample in the dataset and averaged the results
for every lead time. The graph neural model maintains a lower error ratio in all
lead times, providing more accurate solutions. On the other hand, Fig. 7 shows
images of the spatial average of 5-, 10-, 15-, and 20-day forecasts for the whole
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Fig. 5. Forecast comparison for several lead times. The initial date is April 5, 2020,
with columns representing forecasts at 5-, 10-, 15-, and 20-day horizons, respectively.
The top row shows the ground truth (GT) value for each day, the middle row shows
model predictions for the same days, and the bottom row quantifies the error as the
difference per pixel between the GT and the prediction.
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Fig. 6. Comparison of the RMSE values obtained by our model and the ConvLSTM
model across a 20-day forecast horizon.

dataset. The graph model on the top clearly shows a lower average error in all
the pixels of the images, meaning that the graph neural network can yield better
predictions at any point in the domain. We also observe that the most significant
errors are located near the coast.

An interesting observation is that, while the ConvLSTM produces smooth
and continuous solutions, the graph neural network can estimate more discon-
tinuous solutions. This allows the model to preserve small-scale variations in
its predictions. We also note the presence of triangular shapes induced by the
underlying mesh.
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Fig. 7. Spatial distribution of the RMSE for 5-, 10-, 15-, and 20-day lead time forecasts.
Results represent daily point-wise averages across the study domain. The graph model
yields lower errors in most of the pixels. The highest errors are produced near the coast.

6 Conclusion

In this work, we adapted a GNN for global weather prediction to sub-regional
oceanographic forecasting. We trained the model with the 1.4 dataset to analyze
ocean dynamics in the Canary Islands and the northwest African shore. The
spatial distribution of errors indicates that the model produces higher errors
near the coast. These areas exhibit intense coastal interactions and complex
bathymetric gradients. The lack of explicit atmospheric forcings, the bathymetry,
and the coarse resolution of satellite data limit its ability to predict the SST in
these regions. Our model consistently outperformed ConvLSTM in short- and
long-range ocean forecasting, better capturing fine-scale ocean structures.

Some possible solutions to the triangular artifacts include refining the mesh,
increasing connectivity between grid nodes, or using convolutional layers in the
decoder. Addressing these limitations will be crucial for improving the model.
Future work will also compare with other state-of-the-art methods.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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