Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/147317
Campo DC Valoridioma
dc.contributor.authorCuervo-Londoño, Giovanny A.en_US
dc.contributor.authorSánchez, Javieren_US
dc.contributor.authorRodríguez-Santana, Ángelen_US
dc.date.accessioned2025-09-22T09:16:32Z-
dc.date.available2025-09-22T09:16:32Z-
dc.date.issued2025en_US
dc.identifier.isbn978-3-032-05059-5en_US
dc.identifier.issn0302-9743en_US
dc.identifier.urihttps://accedacris.ulpgc.es/jspui/handle/10553/147317-
dc.description.abstractPredicting the evolution of sea surface temperature (SST) is essential for applications in weather forecasting, maritime transport, and fisheries. Traditional ocean forecasting methods rely on physics-based numerical models, which face challenges such as data gaps, assimilation difficulties, and computational inefficiencies. Recent advances in Graph Neural Networks (GNNs) have shown promise in improving prediction accuracy and efficiency. In this work, we adapt a GNN model, initially designed for atmospheric forecasting, to oceanographic applications. We focus on the Canary Islands and the northwest African shore regions characterized by strong mesoscale dynamics. Our approach introduces a spatially masked loss function to address ocean-specific challenges like spatial discontinuities and observational data sparsity. We train our model using the L4 SST satellite images dataset from Copernicus Marine Service and compare its performance with state-of-the-art ConvLSTM-based models. Our results indicate that the adapted GNN model effectively captures mesoscale structures and outperforms ConvLSTM in both computational efficiency and accuracy. These findings suggest that graph-based deep learning approaches can overcome key limitations of current oceanographic models and provide a more flexible and scalable solution for forecasting oceanographic variables from satellite images.en_US
dc.languageengen_US
dc.publisherSpringeren_US
dc.sourceComputer Analysis of Images and Patterns: 21st International Conference (CAIP 2025), [ISBN 978-3-032-05059-5], Las Palmas de Gran Canaria, 22-25 septiembre 2025en_US
dc.subject3304 Tecnología de los ordenadoresen_US
dc.subject2510 Oceanografíaen_US
dc.subject.otherGraph neural networken_US
dc.subject.otherDeep learningen_US
dc.subject.otherRemote sensingen_US
dc.subject.otherForecastingen_US
dc.subject.otherOceanographyen_US
dc.titleForecasting Sea Surface Temperature from Satellite Images with Graph Neural Networksen_US
dc.typebook_contenten_US
dc.relation.conference21st International Conference in Computer Analysis of Images and Patterns (CAIP 2025)en_US
dc.identifier.doi10.1007/978-3-032-05060-1_28en_US
dc.description.lastpage339en_US
dc.description.firstpage329en_US
dc.relation.volume2en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.description.numberofpages11en_US
dc.utils.revisionen_US
dc.date.coverdateSeptiembre 2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IUCES: Centro de Tecnologías de la Imagen-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR ECOAQUA: Oceanografía Física y Geofísica Aplicada-
crisitem.author.deptIU de Investigación en Acuicultura Sostenible y Ec-
crisitem.author.deptDepartamento de Física-
crisitem.author.orcid0000-0001-8514-4350-
crisitem.author.orcid0000-0003-1960-6777-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Investigación en Acuicultura Sostenible y Ec-
crisitem.author.fullNameSánchez Pérez, Javier-
crisitem.author.fullNameRodríguez Santana, Ángel-
crisitem.event.eventsstartdate22-09-2025-
crisitem.event.eventsenddate25-09-2025-
Colección:Actas de congresos
pdf
Adobe PDF (4,02 MB)
pdf
Adobe PDF (4,86 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.