Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/handle/10553/141827
Título: Handwriting-Based Gender Classification Using Robotic and Machine Learning Models
Autores/as: Aleman, Belen Esther
Diaz, Moises 
Ferrer, Miguel A. 
Quintana, Jose Juan
Faundez-Zanuy, Marcos
Clasificación UNESCO: 33 Ciencias tecnológicas
Palabras clave: Gender Classification
Handwriting Analysis
Machine Learning
Fecha de publicación: 2025
Publicación seriada: Cognitive Computation 
Resumen: Handwriting analysis provides insights into motor control and cognitive processes, with potential differences arising from biological gender and neurological conditions such as Parkinson’s disease (PD). Investigating these differences can lead to improved understanding of motor and cognitive functions. This study introduces a novel methodology that integrates robotic features to estimate gender from handwriting. Kinematic and dynamic features are estimated by simulating handwriting with a robotic model. Linear predictive coding (LPC) and singular spectrum analysis (SSA) are applied to the kinematic and dynamic sequences. Machine learning algorithms are used to classify handwriting as male or female. Handwriting samples from healthy individuals (BiosecurID database) and PD patients (PaHaW dataset) were analyzed. The proposed method demonstrates state-of-the-art performance in gender classification, revealing significant differences between healthy and unhealthy individuals. The robotic-based approach successfully mimics arm movements during writing, highlighting distinct motor patterns associated with gender and health status. This research advances the understanding of gender-based differences in motor and cognitive function, particularly in populations with neurological conditions. The integration of robotic features and machine learning provides a promising pathway for future investigations in handwriting analysis, gender classification, and neurodegenerative disease diagnosis.
URI: https://accedacris.ulpgc.es/handle/10553/141827
ISSN: 1866-9956
DOI: 10.1007/s12559-025-10478-2
Fuente: Cognitive Computation[ISSN 1866-9956],v. 17 (4), (Agosto 2025)
Colección:Artículos
Adobe PDF (1,87 MB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.