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Abstract
Handwriting analysis provides insights into motor control and cognitive processes, with potential differences arising from bio-
logical gender and neurological conditions such as Parkinson’s disease (PD). Investigating these differences can lead to improved 
understanding of motor and cognitive functions. This study introduces a novel methodology that integrates robotic features to 
estimate gender from handwriting. Kinematic and dynamic features are estimated by simulating handwriting with a robotic 
model. Linear predictive coding (LPC) and singular spectrum analysis (SSA) are applied to the kinematic and dynamic sequences. 
Machine learning algorithms are used to classify handwriting as male or female. Handwriting samples from healthy individuals 
(BiosecurID database) and PD patients (PaHaW dataset) were analyzed. The proposed method demonstrates state-of-the-art per-
formance in gender classification, revealing significant differences between healthy and unhealthy individuals. The robotic-based 
approach successfully mimics arm movements during writing, highlighting distinct motor patterns associated with gender and 
health status. This research advances the understanding of gender-based differences in motor and cognitive function, particularly in 
populations with neurological conditions. The integration of robotic features and machine learning provides a promising pathway 
for future investigations in handwriting analysis, gender classification, and neurodegenerative disease diagnosis.

Keywords Handwriting analysis · Gender classification · Machine learning

Introduction

Handwriting analysis has been widely studied in the field of 
biometrics, with one key objective being the identification of 
writer demographic characteristics. Research by Bouadjenek 
et al. [7] has demonstrated the feasibility of predicting gen-
der from handwriting using feature extraction and machine 
learning techniques. Similarly, Asci et al. [4] used convolu-
tional neural networks (CNNs) for age and gender classifica-
tion, showcasing the potential of machine learning to detect 
subtle handwriting differences linked to the writer’s gender.

The movement of the human arm shares significant simi-
larities with a robotic chain composed of joints with varying 

degrees of freedom. When the end effector performs hand-
writing, the entire chain moves accordingly. However, current 
digitizers primarily capture the stylus trajectory and pressure, 
providing limited insight into the underlying arm movement 
or its physical properties, such as mass, inertia, and segment 
lengths.

This work is primarily a methodological study that focuses 
on both cognitive biometrics and neurodiagnostics. Through 
the integration of robotic modeling and machine learning 
techniques, we aim to explore the underlying movement 
characteristics associated with handwriting, assessing their 
relevance to individual identification and the detection of 
neuromotor pathologies.

In this study, we model a robotic arm to replicate hand-
writing tasks by estimating its kinematics and dynamics 
during the writing process. Robotics opens new avenues for 
biometric analysis and pattern recognition, as demonstrated 
in the development of robot kinematics for handwriting 
signature verification by Diaz et al. [14, 15]. Leveraging 
real kinematic and dynamic data from a UR5e robot and 
predicting these features using a multilayer perceptron have 
also shown promising results in the signature verification 
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domain [16]. Despite these advancements, kinematic and 
dynamic features remain underexplored in the context of 
gender classification through handwriting. In this work, we 
apply machine learning models to analyze movement pat-
terns, with the goal of accurately classifying the writer’s 
gender based on distinctive motion characteristics.

An additional experimental novelty of this work lies in the 
examination of handwriting from both healthy individuals 
and those affected by Parkinson’s disease (PD). Handwrit-
ing impairments are among the early motor symptoms of 
Parkinson’s disease. By evaluating handwriting across both 
healthy and PD-affected individuals, we assess the robust-
ness of robotic feature modeling in populations with motor 
deficits.

Our research presents an innovative method for gender 
classification through handwriting by integrating robotic 
modeling and machine learning techniques. By clearly defin-
ing the methodological focus and emphasizing neurodiag-
nostic applications, we provide a structured framework that 
advances both cognitive biometrics and PD-related research. 
The results suggest that combining robotics with advanced 
machine learning opens new pathways for research and prac-
tical applications, including individual identification and the 
detection of neuromotor pathologies.

Although handwriting traits are generally associated with 
biological sex, we follow the convention established in the 
literature by using the term “gender classification” through-
out this work. This choice aligns with the labeling in the 
databases, where participants are categorized as “male” or 
“female” based on self-reported gender identity.

Handwriting and Cognitive Computation

The relationship between handwriting and cognitive com-
putation has long been of interest to researchers seeking to 
understand the interplay between motor control and higher-
order brain functions. Cognitive computation, a field that 
draws inspiration from how biological systems process, 
store, and use information, provides powerful tools for ana-
lyzing and interpreting complex patterns in handwriting. 
Handwriting tasks inherently involve both motor execution 
and cognitive planning, making them an ideal subject for 
exploring cognitive processes such as decision-making, 
memory retrieval, and sensory-motor integration.

The features extracted through singular spectrum analysis 
(SSA) and linear predictive coding (LPC) are not only statis-
tical summaries but also reflect cognitive processes such as 
pattern decomposition, temporal prediction, and planning. 
SSA decomposes handwriting dynamics into dominant pat-
terns, akin to the brain’s decomposition of complex motor 
sequences into simpler sub-movements. LPC models the pre-
dictive aspect of motor behavior by estimating future states 
from past movements, resembling human anticipatory motor 

control strategies. Thus, the extracted features simulate core 
cognitive mechanisms underlying handwriting production.

Furthermore, integrating a robotic arm model enables a 
biomechanically grounded simulation of handwriting move-
ment, offering insight into variability across populations, 
including individuals with Parkinson’s disease. By combin-
ing these methodologies, the research aims to contribute to 
biometric analysis and the understanding of motor behavior 
in neurodegenerative conditions.

The article is structured as follows: the “Related Works” 
section reviews prior work on gender classification. The 
“Method” section details the methodology for estimating the 
kinematics and dynamics of the robotic arm. The “Experi-
ments” section describes the experimental setup, databases, 
and classifiers used. The “Results” section presents experi-
mental results, distinguishing between healthy and PD-
affected handwriting. Finally, the “Conclusions” section 
concludes the paper with key findings and future directions.

Related Works

Gender classification through the use of machine learning 
has been an active area of research, with numerous studies 
providing different approaches and techniques to improve 
the accuracy and effectiveness of models.

Handwriting Image‑Based Approaches

Study [7] explored the prediction of age, gender, and hand 
dominance from gradient features in handwriting. Their 
findings suggest that these features can capture relevant 
differences in handwriting patterns between genders. An 
automated method to predict age, gender, and nationality 
from handwriting in offline mode is presented in [1]. Using 
advanced image processing techniques, they demonstrated 
the effectiveness of these methods for accurate classifica-
tions. Investigating gender detection using written docu-
ments, AL-Qawasmeh and Suen [2] used transfer learning. 
This approach leverages pre-trained models to improve accu-
racy for handwriting tasks, showing significant improve-
ments in gender classification. Next, Palaiahnakote et al. [31] 
developed a robust, script-independent system for gender 
identification from handwriting. This approach proved effec-
tive in gender classification regardless of language or writing 
style, demonstrating the versatility of their model.

Handwriting Kinematic‑Based Approaches

In an approach focused on online handwriting, Marzinotto 
et al. [29] developed a two-layer clustering method to classify 
age and gender. This study revealed that dynamic features 
of handwriting can be valuable for gender identification, 
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showing promising results. On the other hand, Rabaev et al. 
[33] used a bilinear ResNet for automatic gender and age 
classification from offline handwriting. This method was 
noteworthy for its robustness and accuracy, demonstrating 
the capability of ResNet networks to extract discriminative 
features. The study in [36] explored gender recognition based 
on online handwriting using statistical and machine learn-
ing techniques. Their results showed that these techniques 
can capture dynamic features of handwriting indicative of 
the writer’s gender. Study [11] focused on gender identifi-
cation through online handwriting, using machine learning 
techniques to achieve high accuracy. This underlined the 
importance of temporal and dynamic features in handwrit-
ing for gender classification. Gender differences in online 
handwriting signals to improve e-Health and e-Safety appli-
cations were analyzed in [20]. Their findings highlighted 
the effectiveness of online handwriting features for gender 
classification. Study [35] investigated gender classification 
using online allographies. Their text-dependent allographic 
approach proved effective, highlighting the relevance of tex-
tual features in gender identification. Meanwhile, Maurer [30] 
examined differential patterns in early handwriting between 
girls and boys, finding significant differences that influence 
gender classification. This study highlighted the importance 
of considering gender differences from an early age [31].

Other Modalities

For this task of gender classification, the literature has used 
other modalities beyond handwriting. For example, in [26], 
the use of CNNs is proposed to classify a person’s age and 
gender from facial images. The research showed that CNNs 
are capable of extracting robust features and performing 
accurate classifications, highlighting their effectiveness in 
gender identification. Facial images and voice were com-
bined in [32] in a deep neural network model for combined 
age and gender classification. Using fine-tuning techniques, 
they were able to improve classification accuracy, highlight-
ing the importance of integrating multiple data modalities. 
In a different approach, Russel and Selvaraj [34] investigated 
gender discrimination, age group classification, and carried 
object recognition using gait energy images and a fusion of 
parallel neural networks. This study showed how motion 
features can be useful for gender classification.

Method

Our work proposes estimating angular positions and torque 
during handwriting tasks. To achieve this, a linear position 
(x, y, z) of a handwriting sample registered through a digitizer 
is required. We then develop a robot with characteristics similar 
to a human arm to determine, by developing robotic kinematics, 

the angular positions ( �1, �2, �3, �4, �5 ) that the robot’s joints 
would adopt to reach that linear position. From the angular 
position, the dynamics of the robot have been worked out to 
calculate the torques ( �1, �2, �3, �4, �5 ) of each joint. Figure 1 
shows a diagram of the process described. The designed robot 
configuration is described in the “Robotic Configuration” sec-
tion. The “Robot Kinematics” section explains the development 
of the robot kinematics. Finally, the “Robotic Dynamic Move-
ment” section describes the developed dynamics of the robot.

Robotic Configuration

The robot model developed in this work aims to resemble 
the movement of the human arm, with the ability to execute 
the precise, complex movements a person makes when writ-
ing or drawing. This model is not based on a specific robot. 
Instead, physical and mathematical formulation was applied 
inspired by a human upper limb and ergonomic position to 
write. Figure 2a shows each link of the robot and its similar-
ity to the human arm. The degrees of freedom (DoF) of the 
robot also aimed to mimic the DoF of human arms. The five 
DoF of our robotic model are highlighted in Fig. 2b.

To enhance the realism in the robot, anthropometric data 
on average forearm, hand, and finger lengths were obtained 
by reference to [5]. In addition to the length, the mass of 
each link was determined. This needed to consider the 
combined weight of the forearm and hand as representing 
approximately 2.3% of total body mass, with the hand alone 
accounting for 0.7% [28]. To determine the weight of the 
forearm, the total weight of the forearm-hand combination is 
calculated, and the weight corresponding to the hand is sub-
tracted [28]. The index finger was also estimated to weigh 
around 0.01 kg, so this value is subtracted from the mass of 
the hand, considering that the mass of the other fingers is 
included in the total weight of the hand. Table 1 presents the 
mass and length values for each link.

Having established the robotic configuration, we proceed 
to model its kinematics by solving the direct and inverse 
positioning problems.

Fig. 1  Conversion of linear position to torque in robotic systems
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Robot Kinematics

Robot kinematics aims to relate the changes in the posi-
tion and orientation (pose) of the robot’s end effector to 
the position of its joints � =

(
�1, �2, �3, �4, �5

)
 , without 

considering forces. The robot’s end effector coordinates, 
r =

(
rx, ry, rz

)
 , are the only available information obtained 

from handwriting-based digitizers.

There are two main problems in the robot kinematics: 
on the one hand, studying the pose of the end effector 
based on the position of the kinematic chain joints, which 
has a unique solution, and on the other, calculating the 
position of the joints from the pose of the end effector. 
The solution to the latter is not usually unique and, if the 
system has more DoF than necessary, there may be infinite 
solutions.

(a) Comparative study of human and robotic arm biomechanics. 

(b) Kinematic diagram of the 5-degree-of-freedom robotic arm with joint coordinates and reference frames. 

Fig. 2  Conceptual model for the kinematic and biomechanical design of the robotic arm. a Comparative study of human and robotic arm biome-
chanics. b Kinematic diagram of the 5-degree-of-freedom robotic arm with joint coordinates and reference frames
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The calculation of a robot’s end-effector pose related 
to the positions of its joints is commonly performed using 
the Denavit-Hartenberg algorithm [13], which is a widely 
used method in robotics. This algorithm assigns a reference 
frame to each joint and, by relating each frame to the previ-
ous one, enables the determination of the end-effector pose 
relative to the base frame. Figure 2b shows the reference 
frames associated with each DoF of our robotic model.

According to this method, each joint is fully defined by 
four parameters which are the movements to be performed 
in the reference system 

{
Si−1

}
 so that it coincides with the 

reference system 
{
Si
}
 . In this context, 

{
Si−1

}
 represents the 

reference frame of the anterior joint, and 
{
Si
}
 represents 

the reference frame which describes the relative position 
and orientation of joint i. These parameters are the angle 
�i that must be rotated about the zi−1 axis so that the xi−1 
and xi axes are parallel, the displacement di that must be 
moved along the zi−1 axis so that the xi−1 and xi axes are 
aligned, the displacement ai that must be moved along the 
new xi−1 axis so that the two reference systems are in the 
same place, and finally the angle �i that must be rotated 
about the new xi−1 axis so that the zi−1 and zi axes coincide.

Applying this algorithm to the kinematic chain in 
Fig.  2b gives the Denavit-Hartenberg parameters in 
Table 2.

In Table 2, the row corresponding to joint i relates the 
reference system 

{
Si
}
 to the reference system 

{
Si−1

}
 by 

using the homogeneous transformation matrix iAi−1 [11], 
given by Eq. 1:

Because homogeneous transformation matrices can be 
composed, the one relating the robot end to its base can be 
calculated easily by means of Eq. 2 as follows:

(1)

iAi−1 =

⎛⎜⎜⎜⎝
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where the first three rows of the last column of the matrix 
0A5 give the position of the end of the robot relative to the 
base reference system 

{
S0
}
 . Therefore, the position of the 

end of the robot relative to its base can be known in this way, 
based on the angles �i.

Nevertheless, our aim is to calculate the joint positions 
given a specific end-effector position. It is important to note 
that since the robot has five DoF and only the position of the 
target point is known, equivalent to three DoF, two angles 
must be fixed to render the system solvable. These angles 
can be chosen freely to define, for instance, the hand orienta-
tion or other parameters.

The literature describes several methods for calculating 
robot angles [11]: trigonometric methods, iterative meth-
ods based on the homogeneous transformation matrix, and 
iterative methods based on Jacobians, among others. For this 
work, an iterative method based on the homogeneous trans-
formation matrix was chosen as it is an immediate method if 
the D-H parameters of the robot are known and because the 
calculation time is not a critical factor for the handwriting 
tasks to be performed.

To implement this method, a function must be defined 
to minimize fR . This function takes three input parameters: 
the spatial point r, used to compute the robot’s angles; a 
set of five angles θ, which, according to Eq. 2, determine 
the position reached by the robot; and two additional angles 
that remain constant. The function’s output parameter is the 
error, which is defined as the Euclidean distance between 
the desired point and the point reached by the robot with the 
given angles. If this error is less than a specified threshold 
(10⁻4 by default), the angles are considered a valid solution 
to the kinematic problem.

The procedure for calculating the angles is described as 
follows:

• Start with a point r located within the robot’s working 
area, referred to the robot base coordinate frame, identi-
fied as 

{
S0
}
 in Fig. 2b.

• Define the two angles that will remain constant during 
the calculation.

• Select a seed, a set of three initial values for the itera-
tions, to calculate the remaining three angles �s . A bank 
of seeds is available to cover all possible positions of the 
robot.

• Determine the desired angles using the Nelder-Mead 
simplex minimization algorithm [24], specifying the 
function to be minimized, fR , and the seed chosen. The 
MATLAB fminsearch function, which implements this 
algorithm, is used for the calculation.

• If the minimization algorithm does not converge, repeat 
steps 3 and 4 with a new seed.

(2)0A5 =
0A1

1A2
2A3

3A4
4A5

Table 1  Mechanical dimensions 
of the links in the proposed 
robotic model [28]

Link Length (cm) Mass (kg)

L1 28 1.26
L2 11 0.48
L3 10 0.01

Table 2  Denavit-Hartenberg 
parameters for the study robot 
[13]
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The redundancy in our robotic arm, modeled with five 
degrees of freedom (DoF), mirrors the redundancy inherent 
in the human upper limb, where multiple joint configurations 
can achieve identical end-effector positions. This charac-
teristic parallels human motor control strategies where the 
central nervous system resolves multiple feasible move-
ments by optimizing effort, stability, or sensory feedback, 
as described in muscle synergy theories. Modeling inverse 
kinematics thus serves not only mechanical purposes, but 
also provides a bioinspired approximation of human motor 
planning processes.

In this article, the angles �2 and �4 were set to 0° and 50°, 
respectively, to approximate typical wrist and hand configu-
rations during handwriting tasks, as reported in ergonomic 
studies. A sensitivity analysis indicated that moderate vari-
ations of ± 10° around these values did not significantly 
impact the resulting torque or classification performances, 
supporting the robustness of this choice.

Robotic Dynamic Movement

Robot dynamic analysis focuses on how applied forces 
influence the motion of the robot. The dynamic model of 
a robot is derived from the values of the angular position 
( �1, �2,⋯ �5 ). For robots with one or two degrees of free-
dom, the solution is relatively straightforward. However, 
for robots with multiple degrees of freedom, the equations 
become considerably more complex, requiring the use of 
iterative methods to solve the dynamic equations [12].

To estimate the torques of each joint, an iterative method 
was used through the dynamics of the robot, specifically 
the Newton–Euler method. This method follows 10 steps 
in which it is possible to find the torque of each link. Sub-
sequently, to simulate dynamic handwriting motions, we 
model the forces and torques involved using Newton–Euler 
formalism. In addition, depending on the configuration 
of the robot, this method presents equations for transla-
tional or rotational joints [12, 23]. According to the con-
figuration of the joints presented in the study robot, the 
rotational equations were used. As we assume that the 
writer was at rest before writing, the initial angular veloc-
ity, angular acceleration, and linear velocity were zero, 
0
𝜔0 =

̇0𝜔0 =
0v0 = [0,0, 0].

The initial linear acceleration of the system, which 
depends on gravity, is described by Eq. 3, which includes 
the acceleration components due to gravity in the refer-
ence frame: gx0, gy0 , and gz0 . In addition, a unit vector on 
the z-axis of the base reference frame, denoted as z0 whose 
values are [0,0, 1] , is used to describe the direction of the 
initial z-axis. This description is crucial to establishing the 

dynamic equations and the forces acting on the robot links. 
The Newton–Euler algorithm takes advantage of these unit 
vectors to calculate the forces and torques required to control 
the robot’s motion.

Equation 4 is the formula that relates system 
{
Si−1

}
 to {

Si
}
 . It describes the position of the system 

{
Si
}
 relative 

to the previous system by the coordinates, where bi is the 
distance on the x-axis, di is the distance on the z-axis, and �i 
is the angle of rotation around the x-axis:

Equation 5 calculates the angular velocity of the system {
Si
}
 by combining the transformed angular velocity of the 

system 
{
Si−1

}
 and the contribution from the angular veloc-

ity of the joint. The notation �̇�i refers to the rate at which 
the joint position changes. iRi−1 corresponds to the rotation 
matrix for the current system 

{
Si
}
 with respect to the previ-

ous system 
{
Si−1

}
.

Equation 6 determines the angular acceleration of sys-
tem 

{
Si
}
 . It includes the angular acceleration of the system {

Si−1
}
 , the angular acceleration of the joint itself, and the 

cross-product term i−1𝜔i−1 × z0�̇�i which considers how the 
previous angular velocity affects the current system angular 
acceleration. The notation �̈�i refers to the angular accelera-
tion of the joint.

Equation 7 calculates the linear acceleration of system {
Si
}
 . Equation 9 determines the linear acceleration at the 

center of gravity of system 
{
Si
}
 . Additionally, isi repre-

sents the position vector of the center of mass of link i with 
respect to the coordinate system 

{
Si
}
.

To reach this last step, the Newton–Euler algorithm 
requires calculation of the force of each link according to 
Eq. 10. This equation is used to determine the force in a 
link if i by calculating, in the force of the subsequent link 
i+1f i+1 , an initial external force and the acceleration of the 
current link iai . The mass mi is the mass of the system that 
corresponds to the link to which it belongs, thus providing 
an accurate representation of how forces and accelerations 

(3)̇0v0 = −
[
gx0, gy0, gz0

]

(4)ipi =
[
bi, di ⋅ sin

(
𝛼i

)
, dl̇cos

(
𝛼i

)]

(5)i
𝜔i =

iRi−1

(
i−1

𝜔i−1 + z0�̇�i
)

(6)̇i𝜔i =
iRi−1

(
i−1

𝜔i−1 + z0�̈�i
)
+ i−1

𝜔i−1 × z0�̇�i

(7)̇ivi =
̇i𝜔i ×

ipi +
i
𝜔i ×

(
i
𝜔i ∗

ipi
)
+ iRi−1

̇i−1vi−1

(8)iai =
̇i𝜔i ×

isi +
i
𝜔i × ⟨ ̇i𝜔�i ∗ isi⟩ + ̇ivi
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interact within the moving system. That is, Eq. 10 first 
requires an external force and then depends on the force 
of the upper reference frame: 

To calculate the first external pressure, in our case corre-
sponding to 6pr6 , Eq. 11 is used. This equation, [19], converts 
the pressure measured on the ink tool into a force. This con-
version is required because the databases used contain data 
on pressure on the writing surface.

The solution of the sixth-degree polynomial was 
obtained with MATLAB, which uses numerical methods 
to find the solution. The pressure values are converted into 
units in the international system of units (SI) to obtain 
the force of the last link 6f 6 . Equation 12 has been used 
for this, where the area used in the formula is 0.08, cor-
responding to the surface area of the pen [19].

Equation 13 shows the equation for the exerted torque. 
The first calculation requires an external torque, which in 
this case is 0, and then depends on the calculated torque of 
the upper link. Furthermore, this equation uses the matrix 
which corresponds to the inertia matrix. In our case, the 
inertia matrix for each 

{
Si
}
 is a 3 × 3 matrix with all its 

elements equal to 0, because the center of mass coin-
cides with the center of gravity. This means there are no 
moments of inertia about the reference axes, thus simplify-
ing the calculations.

In Eq.  14, the general Newton–Euler formula that 
describes the torque of a rotational joint is shown, cor-
responding to the last step of the algorithm.

In addition, in the databases, the position on the z axis 
is recorded as movements in the air and on the surface, 
represented with the values of 0 and 1, respectively. For 
this purpose, it was established that for the value 0, the 
z axis would correspond to 4 mm, which is a reasonable 
pen-up distance with respect to the table.

(9)if i =
iRi+1

i+1f i+1 + mi
iai

(10)

pressure
(
6
pr

6

)
= 5.48 ⋅ 10

−6
⋅

(
6
pr

6

)6
+ 3 ⋅ 10

−3
⋅

(
6
pr

6

)5
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(
6
pr

6

)4

−0.76 ⋅
(
6
pr

6

)3
+ 6.52 ⋅

(
6
pr

6

)2
+ 28.89 ⋅

(
6
pr

6

)
− 9.90

(11)Force
(
6f

6

)
= pressure

(
6pr

6

)
⋅ area

(12)
ini =

iRi+1

[
i+1ni+1 +

(
iRi+1

ipi
)
× i+1f i+1

]
+
(
ipi +

isi
)
× mi

iai +
iIi

i
�i +

i
�i ×

(
iIi

i
�i

)

(13)�i =
ini

iRi−1z0

Experiments

Databases

In this study, we used two databases that provide handwriting 
of individuals selected by gender. On the one hand, we used 
the BiosecurID database [21], which includes different hand-
writing-based tasks executed by healthy males and females. 
On the other hand, we used the PaHaW database [17, 18], 
which includes other handwriting tasks differentiated by gen-
der. This database also contains handwriting carried out by 
healthy individuals and people affected by Parkinson’s dis-
ease. These two corpuses enabled us to test the robustness of 
our robotic features on different handwriting tasks produced 
by healthy and unhealthy individuals by gender.

BiosecurID Database

The “Biometric Multimodal Database” [21] acquired 
within the BiosecurID project (BiosecurID) is a com-
mon database used in the analysis of gender classification 
through handwriting [20, 35], since it includes several 
biometric traits in addition to handwriting tasks. In total, 
400 healthy participants (215 (53.75%) males and 185 
(46.25%) females) with a mean age of 31.94 (SD of 12.49) 
were involved in the data collection. For the handwriting 
tasks, they used an inking pen and a Wacom Intuos3 A4 
digitizer, which was set up at 5080 dpi, 1024 pressure lev-
els, and an accuracy of around 0.25 mm. All handwriting 
tasks were studied in this article, which were repeated four 
times in four sessions over a time span of 4 months: (1) 
1 × 4 digit sequence from 1 to 9 and the last the 0 (HW1); 
1 × 4 upper-case words, 16 words per handwriting task 
(HW2); 1 × 4 Spanish text in lower-case (HW3); 3 × 4 
genuine signatures (SG); and 3 × 4 skilled forgery signa-
tures (FAKE SG).

PaHaW Database

The “Parkinson’s disease handwriting database” (PaHaW) 
includes 38 healthy writers (20 (52.63%) males and 18 
(47.37%) females) and 37 affected by Parkinson’s dis-
ease (19 (51.35%) males and 18 (48.65%) females). Both 
healthy (mean age of 62.4 and SD of 11.3) and unhealthy 
(mean age of 69.3 and SD of 10.9) volunteers executed 
eight handwriting-based tasks contained in an unfilled 
template and holding an inking pen over a Wacom Intuos 
4 M digitizer [17, 18]. The following eight handwriting 
tasks were required to be completed by all participants in 
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a single section: (1) drawing an Archimedes spiral (SPI-
RAL); (2) writing in cursive the letter (l); (3) the bigram 
le (le); (4) the trigram les (les); (5) writing in cursive the 
word “female teacher” in Czech (WORD 1); (6) writing 
in cursive the word “to compare” in Czech (WORD 2); 
(7) writing in cursive the word “to not catch” in Czech 
(WORD 3); and writing in cursive the sentence “The tram 
won’t go today” in Czech (SENT).

Classifiers and Settings

With the purpose of distinguishing between handwriting 
samples according to the gender of healthy and unhealthy 
people, we compared different machine learning methods to 
identify differences between these groups. The main objec-
tive of this was to compare the machine learning methods in 
classifying handwriting by gender. For this, SVM, NN, and 
CNN learning machines were used, considering the analysis 
as a binary classification.

The support-vector machine (SVM) is a machine learn-
ing algorithm that analyzes data to classify and predict out-
comes. SVMs can perform linear and non-linear classifi-
cations, using methods that transform data into a complex 
feature space, drawing boundaries between two sets of data 
to minimize classification errors [27].

Neural networks (NN) are a machine learning model 
determined by a layered structure that simulates the neural 
connections of the human brain. This configuration allows 
them to determine decisions through the simulation of neural 
processes [9]. This facilitates learning from data to identify 
patterns, organize information, and make predictions [27].

A convolutional neural network (CNN) is a deep machine 
learning network type that excels in image data process-
ing. CNNs are organized into convolutional, pooling, and 
fully connected (FC) layers. Convolutional layers extract 
hierarchical features from the input data, while pooling lay-
ers perform spatial downsampling to reduce dimensional-
ity and computational load. Additional components such 
as normalization and dropout layers are often included to 
improve training stability and prevent overfitting, and the 
fully connected layers integrate the extracted features for 
final classification [3].

As these classifiers require a fixed length input, the tem-
poral sequences of the kinematic and dynamic values were 
transformed into fixed sequences using the linear predictive 
coding (LPC) and singular spectrum analysis (SSA) features. 
The LPC technique enables prediction of the future values 
of a signal from its previous values [8, 37], its main function 
being to represent the envelope of the signal spectrum using 
a parametric model [8]. In this context, hi is the continuous 

signal h sampled at discrete time points, becoming a time 
series, and ri , representing the estimation of hi , is calcu-
lated as the weighted sum of n prior samples of h , where, 
hi ≈ ri =

∑n

j=1
tjhi−j . Here, n is the model order, which deter-

mines the number of prior samples to be used in the estima-
tion. The predictor coefficients t1,…,tn are adjusted such that 
they minimize the squared error [37], which is the sum of the 
squared differences between the actual values of the signal hi 
and its estimates ri over the time series, 

∑
i

�
hi − ri

�2.
SSA is a technique used in temporal sequences with 

applications in signal processing and multivariate statis-
tics, among other fields. The SSA methodology follows two 
phases, the first one individually decomposes the sequence, 
and the second uses these values to find the new components 
of the sequence [22]. In the study, the velocity subsignal 
was decomposed into 10 channels, the combination of which 
reproduces the original velocity signal, vf  . Ten channels are 
used because they allow detailed decomposition of the sig-
nal, facilitating the analysis of the different energy compo-
nents of the original signal. The velocity energy features 
are calculated by the fraction of energy contained in each 
channel.

Initially, the velocity subsignals are calculated using 
Eq. 14. The velocity is divided by SSA, which takes vf  as 
input and splits it into 10 channels, giving rise to SSA chan-
nels ( Sfn ) as shown in Eq. 15. Sx1 represents the first channel 
obtained from the SSA assessment for trace x. Finally, the 
absolute energy of the SSA channels is scaled as a func-
tion of the total energy of the channels, obtaining the SSA 
characteristics shown in Eq. 16. In Eqs. 16 and 17, lSSA is 
the upper limit of the sum, which indicates the total number 
of components or channels resulting from the SSA analysis, 
and l = 0 is the index indicating that the sum starts at 0 and 
continues until lSSA.

Classification ability is evaluated with accuracy (ACC) 
and area under the curve (AUC) metrics.

(14)vf = Δ(f )

(15)S
fn
← SSA

(
v
f
,N

)
; n = 1, , 2, ...,N = 10

(16)Ffn =
Σ
lSSA
l=0

|||Sfn
|||

fte

(17)fte =
∑N=10

n=1

∑lSSA

l=0

|||Sfn
|||

(18)ACC =
TP + TN

TP + TN + FP + FN
⋅ 100%
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In Eq. 18, the true positive (TP) indicates the number of 
people of one gender correctly identified and the false posi-
tive (FP) corresponds to the number of people classified as 
one gender who actually correspond to the other evaluation 
group. The true negative (TN) is the total number of people 
of one gender correctly identified and the false negative (FN) 
corresponds to the people of one gender who were labeled as 
if they were of the other gender to be evaluated. The AUC is 
a measure that evaluates the overall performance of a clas-
sification model, providing its effectiveness at all decision 
thresholds. Equation 19 presents the AUC formula, where 
(x) represents the function of the receiver operating charac-
teristic (ROC) curve. The AUC ranges from 0 to 1, with 1 
indicating a perfect classification model and 0.5 representing 
random performance [6, 25].

In the study, the position coordinates of the handwriting 
tasks were extracted from the databases to later reproduce 
them in the robot, where the values of the angles made in the 
execution of the handwriting tasks were obtained by means 
of the developed inverse kinematics algorithms. These val-
ues, together with the force exerted in each handwriting task, 
were extracted from the moment values using the dynamic 
problem. After obtaining the time sequences, it was decided 
to convert them into 12 values for the LPC coefficients and 
into 42 values for SSA. The choice of 12 values for the LPC 
coefficients was made to optimize the representation of the 
time sequences, since LPC enables prediction of the future 
values of a signal from its previous values, representing the 
envelope of the signal spectrum efficiently with a paramet-
ric model [37]. In the case of SSA, the transformation into 
42 values allows for decomposition of the time series into 
principal components, capturing the most relevant trends 
and patterns in the data. The models were then trained by 
importing all the available samples, while reserving one of 
them for testing.

In addition, the “Leave-One-Out” (LOO) cross-validation 
method was used to train the machine learning machines 
used. This cross-validation technique, using a single data 

(19)AUC = ∫
1

0

f (x)dx
point as a test set and the rest of the data as a training set, 
enables a robust, detailed evaluation of model performance. 
Reference [9] demonstrated how LOO validation can be 
applied quickly and accurately on support vector machines 
with sparse least squares, thus optimizing the accuracy and 
efficiency of the model. On the other hand, Vehtari et al. 
[38] explored the effectiveness of LOO in evaluating Bayes-
ian models, highlighting its ability to provide accurate esti-
mates of the predictive capacity of models. The use of LOO 
in this study ensures that the models are able to general-
ize adequately to new data, improving the reliability of the 
results obtained.

Figure 3 shows the full pipeline of our work. First, the 
handwriting is digitalized and the tuple of trajectory and 
pressure is acquired (x,y,p). Then, we extract temporal 
robotic features based on a robot model. Specifically, we 
extract kinematic and dynamic features. Fixed numbers of 
features were explored by using SSA and LPC techniques. 
Finally, SVM, NN, and CNN machine learning experiments 
were carried out for gender classification.

Results

In the analysis of handwriting by gender, the objective of 
using the two databases was to evaluate the robustness of 
the robotic-based model characteristics in scenarios with 
healthy and unhealthy people. The results show a difference 
in discrimination by gender, as PD effects on handwriting 
can mask the gender characteristics. The results of analyzing 
healthy people’s handwriting by gender are shown first, then 
the results of analyzing unhealthy people’s handwriting by 
gender. The LPC and SSA characteristics for the two cases 
are shown in the “Gender Classification in Healthy People” 
section and in the “Analysis of Handwriting in Unhealthy 
People” section, where the best results are obtained.

Gender Classification in Healthy People

Tables 3 and 4 show the results of the LPC and SSA features, 
respectively, for the kinematic values of movement during 

Fig. 3  Overview of the proposed methodology pipeline, illustrating the main stages from data acquisition, timing robotic features (kinematic and 
dynamic) in addition to SSA and LPC and classification stage using SVM, NN, and CNN classifiers
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handwriting, i.e., ( �1, �2, �3, �4, �5 ). Tables 5 and 6 show the 
results of the LPC and SSA features, respectively, for the 
dynamic values of movement, i.e., ( �1, �2, �3, �4, �5 ). Finally, 
Tables 7 and 8 show the results of the LPC and SSA charac-
teristics, respectively, for the combination of the kinematic-
dynamic values of movement. The previous tables contain 
the results of the different handwriting tasks that include the 
BiosecurID databases and the PaHaW database.

The results in Table 3 show that, for the kinematic val-
ues, the BiosecurID database obtained the best classification 
result for the LPC features in the “SG” task (ACC = 61.19%; 
AUC = 66.61%) in the SVM and NN machine learning. 
However, for this database, the best classification is obtained 
in the SSA features in the same task (ACC = 68.19%; AUC 
= 74.34%) for the NN machine learning.

In the PaHaW database, it is observed that, for the 
LPC features, the SVM machine learning gives the best 

classification for the “SENT” task (ACC = 81.58%; AUC 
= 92.78%). For the SSA features, the same machine learn-
ing achieves the best classification. However, in this 
case, the corresponding task is “l” (ACC = 76.32%; AUC 
= 89.44%).

The BiosecurID database provides results for the dynamic 
values showing that, for the LPC features, the “SG” task 
obtains the best classification with the SVM machine learn-
ing (ACC = 63.81%; AUC = 67.59%). For the SSA features, 
the best classification is again obtained with the same task 
and machine learning (ACC = 65.38%; AUC = 68.89%).

The results obtained with the PaHaW database for the 
LPC features show that the “les” task (ACC = 76.32%; 
AUC = 75.28%) obtained the highest classification rate for 
the SVM machine learning. However, in the SSA features 
the best classification rate was obtained for the NN machine 
learning in the “l” task (ACC = 71.05%; AUC = 67.78%).

Table 3  Classification accuracy 
(ACC) and area under the 
curve (AUC) for LPC-derived 
kinematic features in healthy 
handwriting samples using 
SVM, NN, and CNN classifiers

Database Handwriting task SVM NN CNN
ACC AUC ACC AUC ACC AUC 

BiosecurID HW1 55.58% 56.10% 53.30% 57.57% 51.02% 47.67%
HW2 50.75% 50.09% 50.50% 52.42% 46.75% 49.59%
HW3 55.08% 55.45% 53.30% 53.82% 59.14% 59.22%
SG 61.19% 66.61% 61.19% 64.80% 50.06% 51.08%
SG FAKE 53.51% 50.73% 50.58% 48.61% 51.42% 50.60%

PaHaW SPIRAL 50.00% 44.89% 25.00% 30.96% 52.78% 49.23%
l 65.79% 71.67% 63.16% 62.78% 50.00% 46.94%
le 52.63% 49.17% 52.63% 53.61% 57.89% 56.11%
les 50.00% 46.11% 55.26% 52.78% 50.00% 51.39%
WORD 1 55.26% 64.72% 50.00% 54.17% 50.00% 45.56%
WORD 2 65.79% 68.61% 44.74% 64.44% 50.00% 47.78%
WORD 3 60.53% 64.17% 57.89% 66.11% 39.47% 32.22%
SENT 81.58% 92.78% 55.28% 61.39% 52.63% 48.61%

Table 4  Classification accuracy 
(ACC) and area under the 
curve (AUC) for SSA-derived 
kinematic features in healthy 
handwriting samples using 
SVM, NN, and CNN classifiers

Database Handwriting task SVM NN CNN

ACC AUC ACC AUC ACC AUC 

BiosecurID HW1 59.90% 65.40% 55.58% 58.14% 46.95% 43.24%
HW2 58.75% 59.22% 52.00% 52.19% 48.75% 46.38%
HW3 66.24% 71.44% 58.88% 62.23% 47.97% 45.04%
SG 67.44% 70.16% 68.19% 74.34% 51.69% 51.92%
SG FAKE 57.01% 59.70% 53.59% 54.20% 50.25% 50.91%

PaHaW SPIRAL 47.22% 37.77% 44.44% 40.25% 47.22% 51.39%
l 76.32% 89.44% 68.42% 79.72% 50.00% 46.94%
le 63.16% 67.78% 52.63% 49.72% 44.74% 51.67%
les 52.63% 56.39% 57.89% 61.39% 63.16% 68.65%
WORD 1 63.16% 63.89% 52.63% 52.78% 39.47% 38.89%
WORD 2 60.53% 60.83% 57.89% 56.11% 50.00% 53.91%
WORD 3 47.37% 44.44% 60.53% 65.00% 42.11% 37.78%
SENT 50.00% 58.33% 42.11% 39.72% 44.74% 47.78%
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Table 5  Classification accuracy 
(ACC) and area under the 
curve (AUC) for LPC-derived 
dynamic features in healthy 
handwriting samples using 
SVM, NN, and CNN classifiers

Database Handwriting task SVM NN CNN

ACC AUC ACC AUC ACC AUC 

BiosecurID HW1 58.12% 59.54% 58.38% 58.81% 53.55% 54.02%
HW2 60.50% 64.58% 61.25% 67.22% 48.25% 46.17%
HW3 49.24% 51.83% 49.75% 50.68% 49.24% 48.84%
SG 63.81% 67.59% 59.81% 62.91% 52.38% 53.29%
SG FAKE 53.17% 55.72% 54.34% 54.82% 51.25% 50.23%

PaHaW SPIRAL 50.00% 50.77% 52.78% 52.63% 50.00% 52.32%
l 50.00% 50.56% 52.63% 59.72% 55.26% 58.06%
le 60.53% 52.50% 47.37% 48.61% 50.00% 50.00%
les 76.32% 75.28% 52.63% 60.00% 42.11% 42.22%
WORD 1 39.47% 48.61% 42.11% 42.78% 52.63% 60.00%
WORD 2 73.68% 82.22% 36.84% 44.44% 50.00% 41.94%
WORD 3 55.26% 55.83% 55.26% 58.06% 42.11% 46.11%
SENT 71.05% 76.67% 57.89% 71.11% 57.89% 60.83%

Table 6  Classification accuracy 
(ACC) and area under the 
curve (AUC) for SSA-derived 
dynamic features in healthy 
handwriting samples using 
SVM, NN, and CNN classifiers

Database Handwriting task SVM NN CNN

ACC AUC ACC AUC ACC AUC 

BiosecurID HW1 57.11% 59.36% 54.31% 57.55% 54.31% 55.69%
HW2 57.50% 61.62% 54.75% 57.90% 53.50% 52.02%
HW3 56.85% 60.59% 56.85% 61.06% 55.08% 52.75%
SG 65.38% 68.89% 65.06% 70.90% 51.19% 50.08%
SG FAKE 57.10% 58.49% 53.42% 55.45% 48.91% 47.17%

PaHaW SPIRAL 61.11% 55.42% 44.44% 48.61% 38.89% 39.94%
l 47.37% 50.56% 71.05% 67.78% 47.37% 50.28%
le 65.79% 78.33% 60.53% 72.78% 47.37% 34.72%
les 63.16% 60.83% 26.32% 30.28% 47.37% 45.00%
WORD 1 60.53% 68.61% 71.05% 84.44% 44.74% 35.56%
WORD 2 68.42% 71.94% 47.37% 54.44% 50.00% 52.22%
WORD 3 55.26% 56.39% 52.63% 51.39% 52.63% 49.72%
SENT 65.79% 72.87% 50.00% 48.06% 55.26% 51.94%

Table 7  Classification accuracy 
(ACC) and area under the 
curve (AUC) for LPC-derived 
kinematic-dynamic features in 
healthy handwriting samples 
using SVM, NN, and CNN 
classifiers

Database Handwriting task SVM NN CNN

ACC AUC ACC AUC ACC AUC 

BiosecurID HW1 62.44% 64.54% 54.06% 55.84% 58.98% 48.08%
HW2 59.00% 60.17% 56.75% 58.41% 49.00% 45.27%
HW3 55.84% 55.80% 52.79% 53.46% 54.57% 55.35%
SG 63.75% 68.65% 61.25% 65.59% 49.31% 49.20%
SG FAKE 54.59% 55.51% 52.50% 50.90% 49.08% 49.93%

PaHaW SPIRAL 47.22% 38.70% 33.33% 28.17% 33.33% 25.70%
l 52.63% 64.72% 57.89% 61.11% 47.37% 48.61%
le 50.00% 45.28% 52.63% 47.78% 50.00% 46.94%
les 55.26% 66.67% 52.63% 53.61% 57.89% 50.00%
WORD 1 63.16% 63.06% 52.63% 62.50% 47.37% 41.39%
WORD 2 73.68% 80.00% 63.16% 55.56% 52.63% 51.67%
WORD 3 65.79% 71.11% 65.79% 58.89% 31.58% 30.00%
SENT 65.79% 78.89% 78.95% 80.83% 50.00% 44.72%
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The results of the BiosecurID database obtained the best 
classification in the “SG” task with the SVM machine learn-
ing (ACC = 63.75%; AUC = 68.65%) for the LPC features in 
Table 7. However, this database achieved the highest clas-
sification value for the SSA feature (ACC = 67.94%; AUC 
= 72.88%) in Table 8.

The PaHaW database in the result of LPC features 
(Table 7) achieved the highest classification in the “SENT” 
task with the NN machine learning (ACC = 78.95%; AUC 
= 80.83%). In SSA features results (Table 8), the ACC value 
of 78.95% and AUC value of 80.83% was achieved in the 
“SENT” task with the same machine learning.

The different results show that, for the BiosecurID data-
base, the SSA coefficients of the kinematics in Table 4 
obtained the highest classification rate in the “SG” task in 
the NN machine learning (ACC = 68.19%; AUC = 74.34%). 
However, it is noted that the best results for the different 
cases are obtained in the “SG” task, but the “SG FAKE” 
task gave a low value. In the PaHaW database, the high-
est classification rate was obtained in the LPC features of 
the kinematics for the “SENT” task and the SVM machine 

learning (ACC = 81.58%; AUC = 92.78%). The “SPIRAL” 
task had notably low performance values.

Analysis of Handwriting in Unhealthy People

Table 9 shows the results of the LPC coefficients for the kin-
ematic values of movement. Table 10 reflects the dynamic 
values for the LPC coefficients, and Table 11 shows the com-
bination of the kinematic-dynamic values.

The results show that, for the kinematic values, the best 
classification rate was obtained in the “SENT” task with 
the NN machine learning (ACC = 75.68%; AUC = 78.36%) 
with the LPC features. For the dynamics, the best values are 
obtained for the “SPIRAL” task in the SVM machine learn-
ing (ACC = 75.00%; AUC = 70.37%) for the LPC features. 
Finally, for the combination of kinematics-dynamics, the 
“SPIRAL” task together with the SVM machine learning 
achieved the best classification rate (ACC = 72.22%; AUC 
= 65.12%) for the SSA features.

The best classification results obtained in the PaHaW 
database with movement of healthy and unhealthy people 

Table 8  Classification accuracy 
(ACC) and area under the 
curve (AUC) for SSA-derived 
kinematic-dynamic features in 
healthy handwriting samples 
using SVM, NN, and CNN 
classifiers

Database Handwriting task SVM NN CNN

ACC AUC ACC AUC ACC AUC 

BiosecurID HW1 64.47% 68.44% 58.38% 60.48% 50.25% 49.68%
HW2 59.75% 64.00% 55.50% 59.06% 51.75% 49.11%
HW3 58.12% 64.39% 60.66% 63.85% 48.22% 46.45%
SG 67.94% 72.88% 67.81% 73.59% 46.00% 43.25%
SG FAKE 56.76% 58.31% 55.09% 57.26% 49.75% 49.41%

PaHaW SPIRAL 50.00% 50.15% 47.22% 34.98% 41.67% 31.89%
l 76.32% 82.50% 60.53% 62.50% 44.74% 48.89%
le 65.79% 75.56% 55.26% 68.89% 44.74% 42.89%
les 73.68% 73.33% 52.63% 53.61% 52.63% 51.39%
WORD 1 71.05% 72.22% 52.63% 62.50% 55.26% 58.06%
WORD 2 63.16% 63.33% 63.16% 55.56% 50.00% 53.33%
WORD 3 55.26% 51.67% 65.79% 58.89% 50.00% 42.50%
SENT 65.79% 55.28% 78.95% 80.83% 50.00% 57.50%

Table 9  Classification accuracy 
(ACC) and area under the 
curve (AUC) for LPC-derived 
kinematic features in unhealthy 
handwriting samples using 
SVM, NN, and CNN classifiers

Database Handwriting task SVM NN CNN

ACC AUC ACC AUC ACC AUC 

PaHaW SPIRAL 55.56% 51.54% 36.11% 37.35% 41.67% 42.28%
l 43.24% 41.81% 40.54% 43.57% 48.65% 53.22%
le 51.35% 52.92% 37.84% 53.51% 56.76% 66.08%
les 48.65% 48.54% 40.54% 38.01% 48.56% 47.95%
WORD 1 32.43% 28.65% 40.54% 39.47% 48.65% 49.42%
WORD 2 56.76% 57.89% 45.95% 50.88% 37.84% 34.21%
WORD 3 59.46% 61.99% 59.46% 58.77% 45.95% 49.71%
SENT 67.57% 73.39% 75.68% 78.36% 43.24% 40.06%
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are noted to have been achieved in the LPC features values 
of the kinematics, in addition to sharing the “SENT” task, 
but for healthy people with the SVM machine learning (ACC 
= 81.58%; AUC = 92.78%) and unhealthy people with the 
NN machine learning (ACC = 75.68%; AUC = 78.36%).

Key Observations

The superior performance of SVM classifiers compared to 
CNNs can be attributed to two main factors. Firstly, the sam-
ple sizes (~ 400 individuals) are relatively small for training 
deep learning models effectively, which can lead to overfit-
ting in CNNs. Secondly, the handwriting dynamics captured 
here are better represented as sequential signals rather than 
spatial images, favoring the temporal modeling strengths of 
kernel-based classifiers like SVMs.

Overall, the SVM classifiers consistently achieved the 
highest accuracy across tasks compared to NN and CNN 
models, particularly in tasks involving longer handwriting 
sequences (e.g., “SENT” and “SG”). Robotic augmentation 
of features notably enhanced classification performance, 
especially in distinguishing gender differences in individuals 
affected by Parkinson’s disease. The best result was obtained 
on the “SENT” task with an accuracy (ACC) of 81.58% and 
AUC of 92.78% in healthy individuals, demonstrating the 
robustness of the proposed method.

Analysis of Handwriting in Healthy and Unhealthy 
People by Gender with Raw Wacom Output

In this section, we present a new experiment designed to 
evaluate the impact of our robotic features on classification 
accuracy. We compare the performance obtained with raw 
data from the pen tablet versus data generated using robotic 
features. For raw Wacom data, we refer to the tuple (x,y,p).

Specifically, Table 12 shows that the best accuracy with 
BiosecurID was 59.90% and in PaHaW was 63.89% in 
some specific tasks. The rest of the performances are below 
54.00%. Using LPC, experimental results of the robotic 
features (kinematics, dynamics, or both) outperform these 
results, at over 75%, as we can see in Tables 3, 5, and 7.

Although SSA improved the performances in Table 13, 
especially in the case of WORD 1 in PaHaW, we observe 
better performances with robotic features in Tables 4, 6, 
and 8, achieving around 78% in ACC and 80% in AUC in 
this dataset. On the other hand, better performances were 
consistently obtained with BiosecurID with the proposed 
features.

In the case of gender classification in unhealthy indi-
viduals, higher confusion is observed in Table 14 with 
results of around 50%. SSA features slightly improved 
these results as shown in Table 15. Although Tables 9, 
10, and 11 also reflect high confusion in these tasks, better 

Table 10  Classification 
accuracy (ACC) and area under 
the curve (AUC) for LPC-
derived dynamic features in 
unhealthy handwriting samples 
using SVM, NN, and CNN 
classifiers

Database Handwriting task SVM NN CNN

ACC AUC ACC AUC ACC AUC 

PaHaW SPIRAL 75.00% 70.37% 41.67% 52.47% 58.33% 56.17%
l 51.35% 50.58% 54.05% 52.92% 45.95% 49.42%
le 37.84% 38.01% 45.95% 37.13% 59.46% 52.05%
les 64.86% 67.54% 35.14% 41.25% 37.84% 38.30%
WORD 1 59.46% 71.05% 45.95% 57.02% 51.35% 46.20%
WORD 2 64.86% 64.04% 59.46% 62.28% 43.24% 48.54%
WORD 3 64.86% 69.59% 48.65% 41.81% 37.84% 36.84%
SENT 54.05% 53.51% 48.65% 50.29% 51.35% 56.14%

Table 11  Classification 
accuracy (ACC) and area 
under the curve (AUC) for 
SSA-derived kinematic-
dynamic features in unhealthy 
handwriting samples using 
SVM, NN, and CNN classifiers

Database Handwriting task SVM NN CNN

ACC AUC ACC AUC ACC AUC 

PaHaW SPIRAL 72.22% 65.12% 63.89% 65.43% 41.67% 49.38%
l 59.46% 62.28% 54.05% 58.19% 48.65% 41.52%
le 35.14% 36.55% 56.76% 57.02% 37.84% 34.21%
les 45.95% 43.27% 67.57% 65.20% 43.24% 43.86%
WORD 1 59.46% 64.33% 70.27% 70.18% 51.35% 43.57%
WORD 2 45.95% 39.77% 45.95% 51.46% 48.65% 35.09%
WORD 3 56.76% 59.06% 64.86% 76.32% 54.05% 53.22%
SENT 40.54% 37.13% 35.14% 48.83% 45.95% 45.03%
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Table 12  Classification 
accuracy (ACC) and area under 
the curve (AUC) for LPC 
raw data features in healthy 
handwriting samples using 
SVM, NN, and CNN classifiers

Database Handwriting task SVM NN CNN

ACC AUC ACC AUC ACC AUC 

BiosecurID HW1 59.90% 65.79% 59.90% 63.35% 51.52% 45.54%
HW2 54.00% 54.86% 52.25% 53.75% 48.75% 52.31%
HW3 53.55% 0.00% 53.05% 47.80% 53.55% 44.63%
SG 53.87% 12.97% 53.06% 46.35% 53.81% 48.79%
SG FAKE 53.67% 49.91% 53.01% 47.43% 53.67% 44.52%

PaHaW SPIRAL 52.78% 5.26% 50.00% 38.39% 63.89% 61.61%
l 52.63% 5.00% 44.74% 35.28% 47.37% 46.39%
le 52.63% 5.00% 44.74% 33.06% 52.63% 48.06%
les 52.63% 5.00% 52.63% 40.56% 52.63% 46.11%
WORD 1 52.63% 5.00% 39.47% 37.78% 42.11% 41.67%
WORD 2 52.63% 5.00% 39.47% 43.61% 55.26% 56.11%
WORD 3 52.63% 5.00% 55.26% 40.28% 52.63% 55.83%
SENT 52.63% 5.00% 31.58% 35.56% 39.47% 38.33%

Table 13  Classification 
accuracy (ACC) and area under 
the curve (AUC) for SSA 
raw data features in healthy 
handwriting samples using 
SVM, NN, and CNN classifiers

Database Handwriting task SVM NN CNN

ACC AUC ACC AUC ACC AUC 

BiosecurID HW1 62.94% 67.42% 63.45% 66.17% 49.75% 48.75%
HW2 56.75% 60.17% 53.50% 56.68% 50.25% 47.39%
HW3 65.23% 68.33% 62.18% 65.60% 52.79% 52.23%
SG 66.75% 70.90% 67.87% 73.95% 49.63% 48.80%
SG FAKE 58.68% 60.70% 57.93% 61.05% 48.83% 48.04%

PaHaW SPIRAL 52.78% 52.94% 44.44% 59.75% 50.00% 45.20%
l 68.42% 77.22% 60.53% 76.39% 60.53% 65.28%
le 42.11% 53.61% 52.63% 61.67% 44.74% 29.72%
les 52.63% 53.06% 55.26% 66.39% 44.74% 40.56%
WORD 1 47.37% 50.28% 44.74% 50.83% 47.37% 42.78%
WORD 2 57.89% 73.06% 52.63% 60.83% 42.11% 41.39%
WORD 3 52.63% 53.33% 55.26% 58.33% 44.74% 45.28%
SENT 60.53% 56.94% 47.37% 50.83% 50.00% 50.83%

Table 14  Classification 
accuracy (ACC) and area under 
the curve (AUC) for LPC raw 
data features in unhealthy 
handwriting samples using 
SVM, NN, and CNN classifiers

Database Handwriting task SVM NN CNN

ACC AUC ACC AUC ACC AUC 

PaHaW SPIRAL 0.00% 0.00% 44.44% 36.73% 44.44% 40.43%
l 51.35% 52.78% 35.14% 34.50% 40.54% 25.44%
le 51.35% 52.78% 54.05% 44.15% 43.24% 35.96%
les 51.35% 52.78% 40.54% 47.95% 51.35% 54.97%
WORD 1 51.35% 52.78% 35.14% 38.01% 51.35% 47.66%
WORD 2 51.35% 47.22% 37.84% 30.41% 45.95% 34.50%
WORD 3 51.35% 52.78% 40.54% 41.81% 54.05% 41.52%
SENT 51.35% 52.78% 54.05% 53.22% 59.46% 48.83%
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performances are shown with robotic features, especially 
with kinematic features, obtaining performances of over 
75%.

Conclusions

A deeper analysis of the extracted kinematic and dynamic 
features could enable the identification of biomechanical 
signatures distinguishing gender and pathology. For exam-
ple, torque patterns may reveal reduced wrist mobility in 
Parkinson’s disease, or greater finger agility in female writ-
ers. Future work will focus on interpretable models linking 
specific joint dynamics to motor strategies.

The development of a robotic model for gender-based 
motion analysis has proven highly effective in replicating 
and analyzing handwriting movements in both healthy indi-
viduals and people with Parkinson’s disease. This model 
offers essential quantitative insights into biomechanical 
variables, enabling precise and consistent assessments of 
kinematic and dynamic handwriting features.

Our findings reveal significant differences in handwriting 
between genders, with kinematic features achieving notable 
accuracy (ACC = 81.58%) and area under the curve (AUC 
= 92.78%) in the “Sent” task for healthy subjects. Addition-
ally, SSA coefficients produced strong results in the “l” task 
(ACC = 76.32%, AUC = 89.44%). Compared to existing 
handwriting-based gender classification methods, our best 
accuracy of 81.58% outperforms previously reported rates, 
which typically range between 65 and 75%, as noted in [7, 
20], and [35]. However, it is important to note that a direct 
comparison is limited by differences in datasets, writing 
tasks, and experimental setups. Moreover, the referenced 
studies primarily involve healthy individuals, whereas our 
work also considers participants with Parkinson’s disease, 
adding further complexity to the comparison. These out-
comes, derived from the PaHaW database using SVM classi-
fiers, underline the robustness of the proposed methodology.

For individuals with Parkinson’s disease, the spiral task 
achieved an ACC of 75.00% and an AUC of 70.37% with 

SVM, demonstrating the efficacy of dynamic data in gender 
classification among neurodegenerative populations.

These findings advance our understanding of how cogni-
tive and neuromotor processes influence handwriting, pro-
viding a bioinspired approach to diagnosing neurological 
conditions and enhancing biometric identification. The use 
of robotic systems that emulate human arm dynamics high-
lights the potential for future cognitive biometric tools capa-
ble of monitoring subtle cognitive-motor changes over time.

The implications of this work extend beyond handwriting 
analysis. Firstly, it underscores the importance of bioinspired 
cognitive computation in addressing broader challenges in 
human–computer interaction and neurodiagnostics. Secondly, 
it highlights a pathway for integrating cognitive modeling and 
robotics to enhance e-Health applications, such as early detec-
tion of neurodegenerative diseases, including Parkinson’s. 
Finally, it opens avenues for further research into gender-based 
cognitive differences and their manifestations in motor tasks.

Beyond gender classification, the proposed robotic mod-
eling framework holds potential for broader applications 
such as motor rehabilitation, handwriting synthesis for assis-
tive technologies, and cognitive-motor skill assessment. By 
simulating and perturbing motor parameters, it could serve 
as a platform to study learning dynamics, error recovery, and 
adaptation in handwriting.

Future studies should aim to expand the dataset to include 
other neurodegenerative diseases and investigate additional 
cognitive features, such as handwriting task complexity 
and error patterns, to refine the model’s predictive capacity. 
Additionally, integrating supplementary biosensors, such as 
electroencephalography (EEG) or electromyography (EMG), 
could provide a more comprehensive understanding of the 
cognitive-motor interface.

Limitations and Future Work

While the presented approach shows promising results, sev-
eral limitations must be acknowledged. Firstly, the handwrit-
ing datasets used are limited in size and diversity, which may 

Table 15  Classification 
accuracy (ACC) and area under 
the curve (AUC) for SSA raw 
data features in unhealthy 
handwriting samples using 
SVM, NN, and CNN classifiers

Database Handwriting task SVM NN CNN

ACC AUC ACC AUC ACC AUC 

PaHaW SPIRAL 58.33% 70.37% 41.67% 40.43% 38.89% 54.32%
l 78.38% 77.49% 59.46% 65.79% 56.76% 52.92%
le 40.54% 48.54% 43.24% 51.56% 43.24% 35.67%
les 51.35% 58.48% 56.76% 64.33% 45.95% 43.27%
WORD 1 48.65% 63.16% 54.05% 59.06% 51.35% 37.13%
WORD 2 40.54% 40.35% 59.46% 54.39% 48.65% 40.06%
WORD 3 32.43% 42.11% 48.65% 49.12% 51.35% 57.02%
SENT 56.76% 59.65% 59.46% 59.06% 51.35% 59.06%
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introduce biases based on language, writing style, or cultural 
background. Secondly, the CNN model comprised a shallow 
neural network composed of fully connected layers with 64 
and 32 neurons, using ReLU activations, which is appropri-
ate for the low-dimensional, non-image input features used 
in this study. Due to the lack of pretrained CNNs for hand-
writing time signals, transfer learning was not employed. 
Future work could explore this avenue. Thirdly, the robotic 
model is based on average anthropometric parameters and 
fixed wrist postures, which may not perfectly reflect individ-
ual variability. Fourthly, the generalization to other scripts 
(e.g., Arabic, Cyrillic) remains unexplored. Future work will 
address these issues by incorporating larger, more diverse 
datasets, modeling variable wrist configurations, and explor-
ing multilingual handwriting samples.
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