Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/handle/10553/141827
Campo DC Valoridioma
dc.contributor.authorAleman, Belen Estheren_US
dc.contributor.authorDiaz, Moisesen_US
dc.contributor.authorFerrer, Miguel A.en_US
dc.contributor.authorQuintana, Jose Juanen_US
dc.contributor.authorFaundez-Zanuy, Marcosen_US
dc.date.accessioned2025-07-01T09:22:04Z-
dc.date.available2025-07-01T09:22:04Z-
dc.date.issued2025en_US
dc.identifier.issn1866-9956en_US
dc.identifier.otherScopus-
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/141827-
dc.description.abstractHandwriting analysis provides insights into motor control and cognitive processes, with potential differences arising from biological gender and neurological conditions such as Parkinson’s disease (PD). Investigating these differences can lead to improved understanding of motor and cognitive functions. This study introduces a novel methodology that integrates robotic features to estimate gender from handwriting. Kinematic and dynamic features are estimated by simulating handwriting with a robotic model. Linear predictive coding (LPC) and singular spectrum analysis (SSA) are applied to the kinematic and dynamic sequences. Machine learning algorithms are used to classify handwriting as male or female. Handwriting samples from healthy individuals (BiosecurID database) and PD patients (PaHaW dataset) were analyzed. The proposed method demonstrates state-of-the-art performance in gender classification, revealing significant differences between healthy and unhealthy individuals. The robotic-based approach successfully mimics arm movements during writing, highlighting distinct motor patterns associated with gender and health status. This research advances the understanding of gender-based differences in motor and cognitive function, particularly in populations with neurological conditions. The integration of robotic features and machine learning provides a promising pathway for future investigations in handwriting analysis, gender classification, and neurodegenerative disease diagnosis.en_US
dc.languageengen_US
dc.relation.ispartofCognitive Computationen_US
dc.sourceCognitive Computation[ISSN 1866-9956],v. 17 (4), (Agosto 2025)en_US
dc.subject33 Ciencias tecnológicasen_US
dc.subject.otherGender Classificationen_US
dc.subject.otherHandwriting Analysisen_US
dc.subject.otherMachine Learningen_US
dc.titleHandwriting-Based Gender Classification Using Robotic and Machine Learning Modelsen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s12559-025-10478-2en_US
dc.identifier.scopus105008699144-
dc.contributor.orcid0009-0001-3654-4048-
dc.contributor.orcid0000-0003-3878-3867-
dc.contributor.orcid0000-0002-2924-1225-
dc.contributor.orcid0000-0003-1166-6257-
dc.contributor.orcid0000-0003-0605-1282-
dc.contributor.authorscopusid58682911500-
dc.contributor.authorscopusid59815658500-
dc.contributor.authorscopusid55636321172-
dc.contributor.authorscopusid24341642700-
dc.contributor.authorscopusid57238059400-
dc.identifier.eissn1866-9964-
dc.identifier.issue4-
dc.relation.volume17en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.date.coverdateAgosto 2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr1,179
dc.description.jcr4,3
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds10,6
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Física-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0003-3878-3867-
crisitem.author.orcid0000-0002-2924-1225-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameDíaz Cabrera, Moisés-
crisitem.author.fullNameFerrer Ballester, Miguel Ángel-
Colección:Artículos
Adobe PDF (1,87 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.