Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/133336
Campo DC Valoridioma
dc.contributor.authorSalas Cáceres, José Ignacioen_US
dc.contributor.authorLorenzo Navarro, José Javieren_US
dc.contributor.authorFreire Obregón, David Sebastiánen_US
dc.contributor.authorCastrillón Santana, Modesto Fernandoen_US
dc.date.accessioned2024-10-02T07:47:55Z-
dc.date.available2024-10-02T07:47:55Z-
dc.date.issued2024en_US
dc.identifier.issn1573-7721en_US
dc.identifier.urihttp://hdl.handle.net/10553/133336-
dc.description.abstractIn the Human-Machine Interactions (HMI) landscape, understanding user emotions is pivotal for elevating user experiences. This paper explores Facial Expression Recognition (FER) within HMI, employing a distinctive multimodal approach that integrates visual and auditory information. Recognizing the dynamic nature of HMI, where situations evolve, this study emphasizes continuous emotion analysis. This work assesses various fusion strategies that involve the addition to the main network of different architectures, such as autoencoders (AE) or an Embracement module, to combine the information of multiple biometric cues. In addition to the multimodal approach, this paper introduces a new architecture that prioritizes temporal dynamics by incorporating Long Short-Term Memory (LSTM) networks. The final proposal, which integrates different multimodal approaches with the temporal focus capabilities of the LSTM architecture, was tested across three public datasets: RAVDESS, SAVEE, and CREMA-D. It showcased state-of-the-art accuracy of 88.11%, 86.75%, and 80.27%, respectively, and outperformed other existing approaches.en_US
dc.languageengen_US
dc.relation.ispartofMultimedia Tools and Applicationsen_US
dc.sourceMultimedia Tools and Applications [ISSN 1573-7721]en_US
dc.subject120304 Inteligencia artificialen_US
dc.subject.otherEmotion recognitionen_US
dc.subject.otherBiometricsen_US
dc.subject.otherMultimodal data fusionen_US
dc.subject.otherHuman-machine interactionen_US
dc.titleMultimodal emotion recognition based on a fusion of audiovisual information with temporal dynamicsen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s11042-024-20227-6en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.description.numberofpages17en_US
dc.utils.revisionen_US
dc.date.coverdateSeptiembre 2024en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
dc.description.sjr0,801-
dc.description.jcr3,9-
dc.description.sjrqQ1-
dc.description.jcrqQ1-
dc.description.scieSCIE-
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0009-0004-7543-3385-
crisitem.author.orcid0000-0002-2834-2067-
crisitem.author.orcid0000-0003-2378-4277-
crisitem.author.orcid0000-0002-8673-2725-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameSalas Cáceres, José Ignacio-
crisitem.author.fullNameLorenzo Navarro, José Javier-
crisitem.author.fullNameFreire Obregón, David Sebastián-
crisitem.author.fullNameCastrillón Santana, Modesto Fernando-
Colección:Artículos
Adobe PDF (1,21 MB)
Vista resumida

Visitas

26
actualizado el 14-dic-2024

Descargas

15
actualizado el 14-dic-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.