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Abstract
In the Human-Machine Interactions (HMI) landscape, understanding user emotions is piv-
otal for elevating user experiences. This paper explores Facial Expression Recognition (FER)
within HMI, employing a distinctive multimodal approach that integrates visual and auditory
information. Recognizing the dynamic nature of HMI, where situations evolve, this study
emphasizes continuous emotion analysis. This work assesses various fusion strategies that
involve the addition to the main network of different architectures, such as autoencoders
(AE) or an Embracement module, to combine the information of multiple biometric cues. In
addition to the multimodal approach, this paper introduces a new architecture that prioritizes
temporal dynamics by incorporating Long Short-TermMemory (LSTM) networks. The final
proposal, which integrates different multimodal approaches with the temporal focus capabil-
ities of the LSTM architecture, was tested across three public datasets: RAVDESS, SAVEE,
and CREMA-D. It showcased state-of-the-art accuracy of 88.11%, 86.75%, and 80.27%,
respectively, and outperformed other existing approaches.

Keywords Emotion recognition · Biometrics · Multimodal data fusion ·
Human-machine interaction

1 Introduction

The significance of emotions in human beings is widely acknowledged, as they exert influ-
ence over numerous facets of human behavior, decision-making, and even the perception of
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the world around us [25]. In a typical social interaction among humans, the emotional state
of the individuals involved assumes considerable importance, as it delineates the conversa-
tional tone, the topics under discussion, and various other aspects thereof. In such situations,
individuals exhibit a natural aptitude for detecting these emotional cues and adeptly adjusting
their behavior in response. In [36], the author argues that all emotions can be characterized
by two fundamental factors: valence, which relates to the degree of pleasure or displeasure,
and arousal, which varies from low to high and denotes the intensity of physiological activa-
tion. Meanwhile, in [13] the authors emphasize that emotions rapidly prepare an individual
for significant interpersonal encounters, and further notes that part of emotional behavior is
innate, stemming from evolution, while part is acquired through learning. Ekman et al. also
introduces criteria for identifying ”basic” emotions, listing six of them in [12]: happiness,
sadness, anger, fear, surprise, and disgust. Both works underscore the importance of recog-
nizing emotions to anticipate an individual’s behavior, and they acknowledge that cultural
differences play a role in how people express emotions.

Additionally, in an era characterized by the growing presence of robots, human-machine
interactions (HMI) are on the rise.Within this context, the quality of user experiences inHMIs
is paramount for seamlessly integrating these technologies into society. Considering this, it
becomes evident that the enhancement of HMI holds substantial significance. To achieve this
improvement and fulfill a more natural interaction, it is imperative to endow machines with
the capability to detect the user’s emotions and to comprehend them, as described in [32]. Not
all machines require emotional awareness, as some, such as computers, function effectively
as rigid entities. Nevertheless, this capability can significantly enhance the user experience
in numerous instances, allowing machines to adapt to the context, as argued in [33], with
HMI as a pertinent example.

This work focuses on emotion detection, particularly facial expression recognition (FER).
Similar to how humans perceive these behaviors through their visual and auditory senses in
real-time, this research adopts a distinctively multimodal approach, integrating information
from images and audio extracted from videos. The reason behind this dynamic method is
rooted in the continuous nature of HMIs, where the state of the situation can, and often
will, vary over time. Building on the observation that emotion recognition can be learned
or given, and considering its significance in HMIs, this work aims to “teach" machines to
perform this task. In other words, the objective is to design a method that can be integrated
into robots, enabling them to recognize emotions and function in a future where HMIs are an
important part of society. Additionally, this work aims to empirically verify the hypothesis
that multimodal approaches often lead to better performance in these tasks compared to
unimodal ones

The main contributions of this paper are as follows: a) the innovative integration of audio
and video modalities within a novel architecture, b) the evaluation of various modality fusion
strategies, and c) the execution of experiments across three public datasets, achieving state-
of-the-art performance.

The structure of this paper is organized as follows: Section 2 discusses related work,
Section 3 provides details about the databases employed in the experiments, Section 4
describes the proposed methodology and outlines the different experiments conducted, and
finally, Section 5 presents and discusses the obtained results, with Section 6 offering con-
cluding remarks.
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2 Related work

Recently, within the field of FER, as in many other domains of Computer Vision, tradi-
tional methods such as Support Vector Machines (SVM) and logistic regression have yielded
ground to new approaches founded on deep learning and neural network architectures as
shown in [24, 39]. These contemporary techniques can be categorized in various ways. How-
ever, in this work, we will group them based on two key parameters: the amount of time the
model can perceive and the number of modalities from which the features are extracted. The
selection of these categorization criteria is motivated by the amount of temporal information
processed (single image vs. sequences) and the number ofmodalities employed (unimodal vs.
multimodal), which are fundamental aspects that significantly impact the design of these tech-
niques. Furthermore, these factors directly influence the complexity of the methods applied
and the type of information available for emotion recognition.

Regarding the temporal context in feature representation, thesemethods can be categorized
into two classes as discussed in [24]: FER networks for static samples and FER networks
for dynamic samples. The former focuses on processing data at a particular instant, such
as static facial images, often incorporating complementary information like gender, age, or
head poses from individuals to improve the results, as seen in [50]. In contrast, the dynamic
approaches deal with extracting temporal information, utilizing methods like the interval
temporal restricted Boltzmann machine in [47] or a 3D convolutional neural network in
[23]. Other specialized elements for extracting temporal information include architectures
like Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU), purpose-built for
this task and easily integrable into various network types, as demonstrated in [44] and [46].
For both, extensions called Bidirectional LSTM (BiLSTM) and Bidirectional GRU (BiGRU)
exist, which train two instances of either LSTMs or GRUs, one to process the sequence in the
original direction and another in reverse, an example of their use can be found in [2], where
they combine BiLSTM with other techniques such as convolutional networks to detect the
pain intensity from facial expressions images.Another example of LSTMs in FERcan be seen
in [29], where the authors employ two LSTMs, one for audio and one for image, in order to
extract features fromvideos and performFER.Both categories share fundamental techniques,
with a standard recommendation to use transfer learning and fine-tuning to address overfitting
from limited databases. More recently, [16] proposed a robust FER classifier that performs
well in challenging real-world environments by combining state-of-the-art models and a
temporal-sequence classifier. Their classifier comprises three sequentially connected blocks.
Each block is a sequential pipeline of a 1D convolutional layer, a batch normalization layer,
and a ReLU activation.

The second classification criterion, which is based on the number of cues used, is suitable
for virtually any biometric data application, and divides the methods into two categories:
unimodal or multimodal. Unimodal networks rely on a single source of information and
often heavily emphasize visual data, as demonstrated in architectures like the one described
in [37]. Even when considering audio-related cues, unimodal approaches may involve cre-
ating a visual representation of the audio, such as a spectrogram, to extract information, as
seen in [22]. However, this transformation does not alter the fact that the modality remains
audio; since the initial data captured by the sensor is audio, this modality remains despite
this processing step. In contrast, multimodal networks leverage various information fusion
methods which, as highlighted in [42], can be performed at different levels. One approach
is sensor-level fusion, where the data is combined at the time of acquisition. Alternatively,
feature-level fusion, as in [14], is where a combination of modalities is produced at the net-
work once the features have already been extracted. Beyond these, another way to fusion
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multiple cues are score-level, as exemplified in [1], where the authors combine the scores
of several models that learn from different information to perform a final decision. Finally,
decision-level fusion, where different methods are used to achieve multiple responses to the
given task and then a voting-like system is used to select a single response, as the one seen
in [26].

A significant challenge in FER research is the lack of datasets that capture real-world
scenarios involving regular people. As noted in [30], existing datasets fall into two categories:
laboratory-controlled datasets such as IEMOCAP by [4] or RECOLA by [35] and “in the
wild" datasets like MELD by [34] or MUStARD by [5]. While controlled datasets provide
valuable data, they may not fully represent the complexities of real-world scenarios due
to the controlled environments. On the other hand, “in-the-wild" datasets, often extracted
from TV shows or movies featuring professional actors, make the datasets not entirely in
the wild, as the acquisition conditions are certainly controlled, therefore producing a lack of
generalizability. These problems, as presented in [30], limit the performance when applying
the models in real scenarios. While other classification schemes for FER datasets exist, the
one adopted best exemplifies the previously noted concern.

As will be elucidated, the work presented here represents an application rooted in deep
learning for processing dynamic multimodal data, using recommended techniques such as
transfer learning and LSTMs. In this work, the multimodal fusion will be performed at a
feature level using audio and visual information extracted from videos.

3 Datasets

This section provides an in-depth overview of the datasets employed in this work, offering
detailed insights into the sources, composition, and characteristics of the data sources essential
for our research. In addition, a table containing the different sets of emotions and other general
information of each dataset can be seen in Table 1.

3.1 RADVESS

The initial dataset under consideration is the RADVESS database, initially described in [27].
This dataset contains audio and video recordings of 24 professional actors conveying eight
distinct emotions: neutral, calm, happy, sad, angry, fearful, disgust, and surprise, resulting in
a total of 7356 recordings, where each actor perform 104 unique vocalizations. Each actor
performed two recordings for each emotion, except for the "Neutral" emotion, for which only
one recording was made. The dataset exhibits meticulous balance, with an equal distribution

Table 1 Emotions considered in each databases

Database # emotions Resolution Cues # of persons

RAVDESS 8, (anger, calm, disgust, fear-
ful, happiness, neutral, sad-
ness, surprise)

1920x1080 Audio and voice 24

SAVEE 7, (anger, disgust, fear, hap-
piness, neutral, sadness, sur-
prise)

960x760 Audio and voice 4

CREMA-D 6, (anger, disgust, fear, happi-
ness, neutral, sadness)

480x360 Audio and voice 91
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of 12 female and 12 male actors, although it predominates caucasian individuals over other
ethnic groups. Notably, this dataset is partitioned into two subsets: one containing samples of
the actors singing and another involving actors speaking. Only the latter subset was utilized
for this research, as it better emulates a realistic environment. RAVDESS provides two levels
of intensity for each emotion, except neutral, normal, and strong, both used indistinctly as the
same emotion. The videos were recorded in a professional recording studio with controlled
light, high-quality cameras, and microphones. The videos range in duration from 3 to 5.5
seconds, exemplary frames can be observed in Fig. 1. RAVDESS’s extensive use in research
has established it as a reference dataset within the community [28]

3.2 SAVEE

The second database employed in this study is the Surrey Audio-Visual Expressed Emotion
(SAVEE) database by [18]. This dataset comprises recordings from four native English-
speaking caucasian males aged between 27 and 31 years. As such, there is an inherent
demographic bias within this dataset. Each individual has contributed 15 recordings for each
of the seven distinct emotions, except for "neutral", which features 30 recordings. Among
the 15 phrases recorded, three are consistent across all emotions, two are specific, and 10 are
generic phrases, resulting in 120 recordings per individual. In order to extract facial expres-
sion features, the actor’s faces were painted with 60 markers adequately distributed across
the facial area. The film conditions were good, with proper illumination and a controlled
environment. Figure 2 illustrates visual samples from the database.

3.3 CREMA-D

The CREMA-D database is a comprehensive repository containing 7,442 original clips deliv-
ered by 91 actors, 48 of which were males and 43 females as seen in [20] . Notably,
this database exhibits deliberate balance in actor demographics, including gender, ethnic
group, and age although as in the other described datasets, there is a prevalent appearance

Fig. 1 Example of frames seen in
RAVDESS. Extracted from [27]
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Fig. 2 Blue markers for tracking placed on subjects’ faces with various emotions (from left): KL (angry), JK
(happy), JE (sad) and DC (neutral) from the SAVEE database. Extracted from [17]

of caucasian actors. These actors articulated a set of 12 sentences, which were subsequently
employed to elicit a wide range of emotional expressions, encompassing six emotions and
four intensity levels. While the videos are divided into intensity levels, the experiment in
this study exclusively focuses on the differentiation of emotions, utilizing the four intensity
levels for each emotion as they were uniformly distributed. Even though the film conditions
were controlled, the quality of the videos is compromised by the native 960x760 resolution
of the camera used. Some CREMA-D frames can be seen in the Fig. 3.

4 Methodology

This section details the methodology employed in the experiments. We will delve into the
data preparation process and the architectures used. Figure 4 visually illustrates the entire
workflow. Section 4.1 will detail the data extraction and preparation steps, while Section 4.2
will present the architecture of the proposed models, including the considered multimodal
fusion methods.

4.1 Data preparation

As previously explained, the proposed approach is inherently multimodal, emphasizing dis-
tinct biometric data sources for emotion recognition.The acquisitionof these data commenced
with a preprocessing step applied to the video clips, as visually depicted in Fig. 5. Given the
presence of two primary information sources, namely audio and image, two preprocessing
procedures were conducted, each starting with the original audiovisual format.

Fig. 3 Example of frames seen in CREMA-D
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Fig. 4 Proposed architecture pipeline: frames and audio from the video are initially extracted. Subsequently,
faces are detected within the frames, while the audio is segmented into chunks. Following this, embeddings are
computed for each modality, which are then fused before being inputted into the LSTM classifier to recognize
emotions

For the visual data, facial detectionwas performed on video frames using theHaarCascade
classifier [45]. The decision to use this model, instead of more recent ones like RetinaFace
[10], LightFace [40], or MTCNN [49], is based on the controlled conditions of the videos,
which consistently feature frontal close-ups of individuals’ faces, making face detection a
simple task. From the detected faces, embeddings were generated using a facial embedder, in
this case, VGG-Face with VGG-16 as its backbone architecture, see [31]. Notably, the VGG-
Face embedder is highly regarded for its proven performance in numerous biometric tasks as
the ones seen in [6], [15] or [48] and in numerous competitions. Then, twoadditional processes
were applied: first, only the embeddings generated from the odd-numbered frames of the
video were selected. This effectively halved the frame rate of the original videos, eliminating
redundant information in the samples. Finally, to align with the LSTM architecture adopted,
these vectors were grouped into sequences of 32, maintaining their chronological order of
appearance in the original video. This process resulted in the creation of multiple sequences
per video.

The procedure for preprocessing audio data is closely paralleled to that of the images.
Initially, the audio was extracted from the video and segmented into three chunks to preserve
temporal coherence. These fragments were subsequently aligned chronologically with the
faces in the multimodal approaches. This alignment ensures that the first third of video
frames corresponds to the first segment of audio, the second third to the second segment, and
so on. Figure 6 shows a visual representation of this association. The audio embeddings were
generated using an audio embedder, in this case, X-vector [43], explicitly trained to transform
audio data of varying duration into fixed-dimensional vectors. Similar to the treatment of
visual information, in the unimodal case, the generated vectors were structured in sequences.

Fig. 5 Data preparation pipeline
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Fig. 6 Visual representation of the association video frame - audio segment

Due to the preprocessing steps described, visual and audio data were transformed into
numerical vectors, making them more suitable for applying fusion techniques. The face
embeddings possess dimensions of 2048,while the audio embeddings comprise 512 elements.
These dimensions were defined by the size of the last layer of the embedding architecture.

The fusion of these two distinct data sources transpired at a feature level. This implies
that the fusion process occurred within the feature vectors generated from both biometric
sources, creating a multimodal application, as defined in [42].

4.2 Proposed architecture

Inspired by the architecture outlined by [3], the architecture proposed in this work is under-
pinned by two central concepts: a feature fusion layer that combines the cues and a LSTM
layer capable of capturing dynamic features. A visual representation of this architecture is
illustrated in Fig. 7. The input to the network consists of embeddings generated from the
processes discussed in Section 4.1. Denoted as �X f for face images and �Xv for audio, these
inputs enter the fusion layer F and produce �X = F( �X f , �Xv), which corresponds to the input
for the LSTM. The data then passes through a fully connected layer with its corresponding
activation function (ReLU) and dropout, concluding with classification through a softmax
layer.

Fig. 7 Proposed architecture
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Four distinct fusion strategies were considered, each varying in how the feature fusion
layer behaves:

a) Visual approach: This approach exclusively utilizes video frames as the data source. So
only the extracted information from the faces is fed up to the LSTM, F( �X f , �Xv) = �X f .

b) Audio approach: Similarly to the previous approach, only audio sequences are employed;
therefore, F( �X f , �Xv) = �Xv . Both this strategy and the previous one can serve as a
baseline for analyzing the performance of the remaining multimodal strategies.

c) Multimodal concatenation: In this approach, the first true multimodal strategy, the audio
feature vectors for each video are paired with the image embeddings, creating image-
audio pairs. These pairs are formed by associating the first audio segment with the first
third of the images, the second with the second third, and so on. Consequently, sets of
32 pairs are generated. Subsequently, F( �X f , �Xv) = �X f ⊕ �Xv , where ⊕ refer to the
concatenation operator, converting each pair into a single vector with a length equivalent
to the sum of their lengths.

d) Multimodal Principal Component Analysis (PCA): The main problem of fusing by con-
catenation is the high dimensionality of the resulting vector �X . As shown in [21], PCA
offers a solution to this problem, allowing the retention of essential information from
both modalities without significant loss. It exploits the correlations between elements
within the concatenated vector to extract the non-shared and most informative features.
The PCA’s hyperparameters were adjusted to ensure that the output vector retains 95%
of the information present in the original. This resulted in dimensionality reductions to
423, 238, and 456 for the RAVDESS, SAVEE, and CREMA-D datasets, respectively,
from their original dimensionality of 2560.

e) Multimodal autoencoder: In this approach, the network builds upon the frame-audio
sequences previously established. As stated and exemplified in [41], multimodal autoen-
coders (AEs) can be used as a way of extracting shared information between the cues
and improving the fusion. Because of this, an AE is trained to reconstruct the pairs,
with the AE’s structure depicted in Fig. 8a. Once the AE is trained effectively, it is
partitioned, with the encoder component isolated and incorporated into the network as
F( �X f , �Xv) = encoder( �X f ⊕ �Xv), the structure is showed in Fig. 8b. This integration
facilitates merging the two embeddings, resulting in a latent space encapsulating features
from both modalities.

Fig. 8 AE structure in its training phase and when acting as a fusion layer
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f) Embracement: The same data preparation steps are applied as in the previous multimodal
approaches. However, in this case, what was previously an encoder or concatenation
function is replaced by an EmbraceNet module [7]. EmbraceNet takes a set of input
vectors and fuses them to generate a unified representation incorporating information
from every cue. The model consists of a set of docking layers and a single embracement
layer. Docking layers ensure that every input vector is the same size. This is achieved
by applying a fully connected layer with the desired output size, followed by a ReLU
activation function. In the embracement layer, these processed vectors are combined
into a single, unified representation using a technique based on multinomial sampling.
This technique ensures that the final vector remains the same size even if one of the
input embeddings is missing. This module was trained concurrently with the rest of the
network. Since during the training of the dockers layers, they consider the correlation
between the different modalities, EmbraceNet’s selection is motivated by the idea that
exploiting these correlations leads to effective multimodal fusion.

The composition of �X for each architecture is detailed in Table 2. All architectures insert
the visual embeddings first, followed by the audio embeddings. While the order of insertion
affects the specific index assigned to each element within the final vector, it has no impact
on the actual information content of it. This is because the methods employed exploit the
correlations between elements from both modalities as a unit.

5 Experiments

This section details the application and evaluation of the methods described in Section 4.
Section 5.1 outlines the training setup, while Section 5.2 explains the chosen evaluation
metrics. Finally, Section 5.3 presents and discusses the obtained results. The conducted
experiments considered the three datasets described in Section 3. Each dataset was divided
into two subsets: a training set consisting of 80% of the samples and a test set comprising the
remaining samples. The number of units in the LSTM layer was set to 16 and was trained
for 100 epochs using the Adam optimizer. An adaptive learning rate was employed during
training, with values adjusting between 1e−03 and 1e−05 based on the network’s specific
requirements. The number of outputs in the softmax layer corresponds to the number of
emotions in the dataset.

Fusion strategies Multimodal AE and Embracement, described in Section 4.2, are based
on trainable models, namely an AE and EmbraceNet. Therefore, they must be trained.

5.1 Training

In the training phase, the entire architecture depicted in Fig. 7 was trained, excluding the
feature extractors, which were used with their original weights frozen. When using the
Embracement strategy, the EmbraceNet network was trained alongside the other layers of the
model. It was configured with an embracement size of 1024, indicating that it would convert
the two embeddings into a single vector of that many elements.

In the particular case of the AE, the isolate architecture was trained independently with a
concatenation of both cues to extract features and reconstruct the vector. The layers consti-
tuting the encoder were then extracted from the AE and integrated into the primary model
as the fusion layer, with its parameters frozen. The training configuration used was the same
as that employed in the previous approaches, using the same optimizer, hyperparameters,
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Table 2 Composition of �X in
each approach Approach LSTM input ( �X )

Visual �X = �X f

Aural �X = �Xv

Concatenation �X = �X f ⊕ �Xv

PCA �X = PCA( �X f ⊕ �Xv)

AE �X = encoder( �X f ⊕ �Xv)

Embracement �X = embracenet( �X f ⊕ �Xv)

and data partitions. As stated before, the differences between the AE architecture during its
training and when used as a fusion layer are visualized in Fig. 8.

5.2 Evaluationmetrics

Two key evaluation metrics will be used to assess the performance of the proposed model
comprehensively: Unweighted Average Recall (UAR) and Accuracy. UAR provides a bal-
anced measure of the model’s ability to correctly identify each emotion class, regardless of
class distribution in the dataset [19, 37]. Accuracy, however, reflects the overall percentage
of correctly classified samples. Utilizing both metrics ensures a well-rounded evaluation,
considering both class-wise performance and overall classification accuracy.

5.3 Results and discussion

Table 3 shows the results obtained with unimodal and the proposed fusion strategies on the
three datasets under consideration. In RADVESS and CREMA-D datasets, the Embracement
strategy outperforms the other three. This is not the case for the SAVEE dataset, where the
best result is obtained using only the visual modality, with the PCA strategy in second
place. The other unimodal strategy, namely acoustic, yields the lowest accuracy in the three
datasets. However, the Concatenation and AE multimodal strategies perform poorly. PCA’s
performance across all three datasets aligns closely with the visual approach. This suggests
that PCA might primarily extract the most informative features from the visual cues. This
aligns with the observation that it achieves the second-best results in the SAVEE dataset,
where visual information seems essential. In general, it can be seen that the multimodal
approaches outperform or at least achieve similar results than the unimodal approaches,
confirming the hypothesis that the multimodal approaches could lead to better performance
than the unimodal ones.

The confusion matrices for the models with the best performance in each dataset are
depicted in Fig. 9. Notably, in multimodal applications such as the ones used with RAVDESS
and CREMA-D, a prominent source of errors involves the confusion between sadness and
fear. Furthermore, in RAVDESS, there is an additional association between fear and anger,
while in CREMA-D, this connection is seen between neutral and sadness. In contrast, the
visual approach employed in SAVEE encounters two main issues: the confusion between
happiness and surprise and the erroneous detection of neutral in sadness samples.

Table 4 compares the performance achieved with the proposed architecture and recent
results from other literature studies. Notably, the proposed Embracement fusion strategy sets
a new state-of-the-art benchmark in the RAVDESS dataset, presenting competitive results in
both CREMA-D and SAVEE datasets. While the result may not claim the best top result, it
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Table 3 Accuracy and UAR
achieved by the used approaches
in each database. Best results for
each one of dataset are bolded

Approach Accuracy (%) UAR (%)

RAVDESS

Visual 82.19 79.89

Acoustic 45.83 44.07

Multimodal concat 80.51 79.59

Multimodal PCA 82.68 83.38

Multimodal AE 73.66 73.70

Embracement 88.11 88.56

SAVEE

Visual 90.60 87.63

Acoustic 60.42 50.78

Multimodal concat 77.62 74.91

Multimodal PCA 86.75 85.23

Multimodal AE 76.01 73.62

Embracement 82.13 79.77

CREMA-D

Visual 73.97 74.05

Acoustic 42.01 42.50

Multimodal concat 71.34 70.72

Multimodal PCA 72.86 73.17

Multimodal AE 67.07 66.21

Embracement 80.27 80.17

closely rivals the performance of leading approaches. The reader must observe that for the
unbalanced SAVEE dataset, an unimodal approach beats the Embracement fusion. In any
case, the homogeneous behavior provided by Embracement fusion strategy evidences the
proposed architecture’s effectiveness, versatility, and competitive performance in the FER
context.

Our findings on the RAVDESS dataset are particularly remarkable. The strong perfor-
mance of multimodal approaches on this dataset supports the hypothesis that these methods
can outperform unimodal ones, at least when both modalities are of high quality, as with
RAVDESS.

It is noteworthy that in the SAVEEdataset, the only datasetwhere themultimodal approach
does not yield the best result, all the top scores are achieved by unimodal facial approaches.
This observation aligns with the earlier assertion that the dataset’s inherent bias makes it
more reliant on visual information. This tendency may explain the superior performance of
unimodal facial approaches in this particular dataset. This fact reveals the main limitation of
the proposed multimodal approaches, where if one of the cues achieves significantly better
performance than the others due to their qualities or quantity, the fusion could dilute the
importance the network gives to the first one, resulting in a loss of performance. However, it
is noteworthy that the multimodal approach achieves comparable results to these unimodal
techniques.

In contrast to the RAVDESS findings, the CREMA-D dataset reveals that unimodal
approaches for both audio and visual modalities previously achieved the best results. Interest-
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Fig. 9 Confusion matrices for the best model in each dataset

ingly, themultimodal EmbraceNetmethod achieves comparable performance onCREMA-D.
These findings suggest that CREMA-D may be a suitable dataset for exploring multimodal
approaches.

As perceived in the previous discussion, the proposed Embracement fusion strategy
achieve state-of-the-art results in each case. This success can be attributed to two key
strengths, as stated in [7], the architecture inherently considerate the cross-modal correlation
that exist between the cues when they come from the same source. Secondly, the architec-
ture incorporates an internal dropout-like mechanism that effectively prevents overfitting to
specific modalities during training. This mechanism distinguishes Embracement from other
fusion techniques. PCA, for instance, often prioritizes features from the dominant cue, not
distinguishing itself from the best of the unimodal approaches, which can be observed in
the difference between PCA results and those obtained using the unimodal visual cues from
the RAVDESS and CREMA-D datasets as shown in Table 3. Meanwhile, the Multimodal
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Table 4 Comparative performances of state-of-the-art methods and the proposed architecture in each of the
three datasets. Best results for each one of dataset are bolded

Ref. & year Metric Performance (%) Modality

RAVDESS

[8] ACC 81.58 Multimodal (Audio + Image)

[38] ACC 84.10 Unimodal (Audio)

[28] ACC 86.70 Multimodal (Audio + Image)

Visual approach (Ours) ACC 82.19 Unimodal (Image)

Multimodal embracement (Ours) ACC 88.10 Multimodal (Audio + Image)

SAVEE

[37] UAR 82.8 Unimodal (Image)

[11] ACC 86.5 Unimodal (Image)

Visual approach (Ours) ACC 90.6 Unimodal (Image)

Multimodal embracement (Ours) ACC 82.13 Multimodal (Audio + Image)

CREMA-D

[9] ACC 70.95 Unimodal (Audio)

[22] ACC 82.96 Unimodal (Audio)

[37] UAR 79.0 Unimodal (Image)

Visual approach (Ours) ACC 73.97 Unimodal (Image)

Multimodal embracement (Ours) ACC 80.27 Multimodal (Audio + Image)

ACC and UAR come from accuracy and unweighted average recall, respectively

AE, focuses on reconstructing the initial concatenation of both embeddings, not necessarily
guaranteeing the extraction of task-relevant features. Embracement, on the other hand, effec-
tively creates a fusion that often led to a better representation of the unimodal features and,
therefore, better performance.

This mechanism distinguishes Embracement from other fusion techniques. PCA, for
instance, often prioritizes features from the dominant modality, which can resemble a uni-
modal approach. Meanwhile, the Multimodal Autoencoder focuses on reconstructing the
initial concatenation of both embeddings, not necessarily guaranteeing the extraction of
task-relevant features. Embracement, on the other hand, effectively creates a fusion that
consistently leads to superior performance.

All experiments were conducted using Python as the primary programming language.
The training was performed on a computer with an Nvidia GTX 3080 10 GB graphics card,
an Intel Core i7-11700K CPU (3.60 GHz), and Ubuntu 22.04 as the operating system. The
architectures were created using the Pytorch library.

6 Conclusions

In conclusion, this study introduces a novel architecture for multimodal emotion recogni-
tion, comprising a fusion layer for integrating audio and visual cues at a feature level and
an LSTM layer for capturing dynamic features. Notably, the architecture achieves state-
of-the-art results in the RAVDESS and SAVEE datasets, underscoring its effectiveness in
enhancing FER performance. Multimodal approaches, such as Multimodal Concatenation
andMultimodal AE, consistently outperformunimodal approaches in datasets likeRAVDESS
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and CREMA-D, highlighting the benefits of leveraging the synergy between audio and visual
cues. However, the study also emphasizes the influence of dataset characteristics, as observed
in SAVEE, where a solid visual bias and audio quality limitations lead to unimodal facial
approaches outperforming multimodal ones. This research underscores the versatility and
adaptability of the proposed architecture across various datasets and emphasizes the need
to consider dataset-specific features when selecting an appropriate approach. These findings
provide valuable insights into multimodal emotion recognition and pave the way for further
research and applications in this domain.

Given the goal of deploying thismodel on autonomousmachines, a crucial aspect for future
research is exploring the inference process forminimal resource consumption. Identifying the
lack of true “in the wild" datasets and developing a dataset that captures real-world scenarios
with diverse expressions and environmental factors would be highly beneficial for evaluating
the robustness of different approaches.
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