Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/133336
Título: | Multimodal emotion recognition based on a fusion of audiovisual information with temporal dynamics | Autores/as: | Salas Cáceres, José Ignacio Lorenzo Navarro, José Javier Freire Obregón, David Sebastián Castrillón Santana, Modesto Fernando |
Clasificación UNESCO: | 120304 Inteligencia artificial | Palabras clave: | Emotion recognition Biometrics Multimodal data fusion Human-machine interaction |
Fecha de publicación: | 2024 | Publicación seriada: | Multimedia Tools and Applications | Resumen: | In the Human-Machine Interactions (HMI) landscape, understanding user emotions is pivotal for elevating user experiences. This paper explores Facial Expression Recognition (FER) within HMI, employing a distinctive multimodal approach that integrates visual and auditory information. Recognizing the dynamic nature of HMI, where situations evolve, this study emphasizes continuous emotion analysis. This work assesses various fusion strategies that involve the addition to the main network of different architectures, such as autoencoders (AE) or an Embracement module, to combine the information of multiple biometric cues. In addition to the multimodal approach, this paper introduces a new architecture that prioritizes temporal dynamics by incorporating Long Short-Term Memory (LSTM) networks. The final proposal, which integrates different multimodal approaches with the temporal focus capabilities of the LSTM architecture, was tested across three public datasets: RAVDESS, SAVEE, and CREMA-D. It showcased state-of-the-art accuracy of 88.11%, 86.75%, and 80.27%, respectively, and outperformed other existing approaches. | URI: | http://hdl.handle.net/10553/133336 | ISSN: | 1573-7721 | DOI: | 10.1007/s11042-024-20227-6 | Fuente: | Multimedia Tools and Applications [ISSN 1573-7721] |
Colección: | Artículos |
Visitas
26
actualizado el 14-dic-2024
Descargas
15
actualizado el 14-dic-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.