Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/133336
Título: Multimodal emotion recognition based on a fusion of audiovisual information with temporal dynamics
Autores/as: Salas Cáceres, José Ignacio 
Lorenzo Navarro, José Javier 
Freire Obregón, David Sebastián 
Castrillón Santana, Modesto Fernando 
Clasificación UNESCO: 120304 Inteligencia artificial
Palabras clave: Emotion recognition
Biometrics
Multimodal data fusion
Human-machine interaction
Fecha de publicación: 2024
Publicación seriada: Multimedia Tools and Applications 
Resumen: In the Human-Machine Interactions (HMI) landscape, understanding user emotions is pivotal for elevating user experiences. This paper explores Facial Expression Recognition (FER) within HMI, employing a distinctive multimodal approach that integrates visual and auditory information. Recognizing the dynamic nature of HMI, where situations evolve, this study emphasizes continuous emotion analysis. This work assesses various fusion strategies that involve the addition to the main network of different architectures, such as autoencoders (AE) or an Embracement module, to combine the information of multiple biometric cues. In addition to the multimodal approach, this paper introduces a new architecture that prioritizes temporal dynamics by incorporating Long Short-Term Memory (LSTM) networks. The final proposal, which integrates different multimodal approaches with the temporal focus capabilities of the LSTM architecture, was tested across three public datasets: RAVDESS, SAVEE, and CREMA-D. It showcased state-of-the-art accuracy of 88.11%, 86.75%, and 80.27%, respectively, and outperformed other existing approaches.
URI: http://hdl.handle.net/10553/133336
ISSN: 1573-7721
DOI: 10.1007/s11042-024-20227-6
Fuente: Multimedia Tools and Applications [ISSN 1573-7721]
Colección:Artículos
Adobe PDF (1,21 MB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.