Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/130599
Título: Cloud-Based Analysis of Large-Scale Hyperspectral Imagery for Oil Spill Detection
Autores/as: Juan M. Haut
Sergio Moreno-Alvarez
Rafael Pastor-Vargas
Pérez García, Ámbar 
Mercedes E. Paoletti
Clasificación UNESCO: 33 Ciencias tecnológicas
Palabras clave: Cloud computing (CC)
disaster monitoring
hyperspectral images (HSIs)
remote sensing (RS)
spectral indices
Fecha de publicación: 2024
Publicación seriada: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 
Resumen: Spectral indices are of fundamental importance in providing insights into the distinctive characteristics of oil spills, making them indispensable tools for effective action planning. The normalized difference oil index (NDOI) is a reliable metric and suitable for the detection of coastal oil spills, effectively leveraging the visible and near-infrared (VNIR) spectral bands offered by commercial sensors. The present study explores the calculation of NDOI with a primary focus on leveraging remotely sensed imagery with rich spectral data. This undertaking necessitates a robust infrastructure to handle and process large datasets, thereby demanding significant memory resources and ensuring scalability. To overcome these challenges, a novel cloud-based approach is proposed in this study to conduct the distributed implementation of the NDOI calculation. This approach offers an accessible and intuitive solution, empowering developers to harness the benefits of cloud platforms. The evaluation of the proposal is conducted by assessing its performance using the scene acquired by the airborne visible infrared imaging spectrometer (AVIRIS) sensor during the 2010 oil rig disaster in the Gulf of Mexico. The catastrophic nature of the event and the subsequent challenges underscore the importance of remote sensing (RS) in facilitating decision-making processes. In this context, cloud-based approaches have emerged as a prominent technological advancement in the RS field. The experimental results demonstrate noteworthy performance by the proposed cloud-based approach and pave the path for future research for fast decision-making applications in scalable environments.
URI: http://hdl.handle.net/10553/130599
ISSN: 1939-1404
DOI: 10.1109/JSTARS.2023.3344022
Fuente: Ieee Journal Of Selected Topics In Applied Earth Observations And Remote Sensing[ISSN 1939-1404],v. 17, p. 2461-2474, (2024)
Colección:Artículos
Vista completa

Citas SCOPUSTM   

4
actualizado el 08-dic-2024

Citas de WEB OF SCIENCETM
Citations

2
actualizado el 08-dic-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.