Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/130599
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Juan M. Haut | en_US |
dc.contributor.author | Sergio Moreno-Alvarez | en_US |
dc.contributor.author | Rafael Pastor-Vargas | en_US |
dc.contributor.author | Pérez García, Ámbar | en_US |
dc.contributor.author | Mercedes E. Paoletti | en_US |
dc.date.accessioned | 2024-05-21T07:52:16Z | - |
dc.date.available | 2024-05-21T07:52:16Z | - |
dc.date.issued | 2024 | en_US |
dc.identifier.issn | 1939-1404 | en_US |
dc.identifier.other | WoS | - |
dc.identifier.uri | http://hdl.handle.net/10553/130599 | - |
dc.description.abstract | Spectral indices are of fundamental importance in providing insights into the distinctive characteristics of oil spills, making them indispensable tools for effective action planning. The normalized difference oil index (NDOI) is a reliable metric and suitable for the detection of coastal oil spills, effectively leveraging the visible and near-infrared (VNIR) spectral bands offered by commercial sensors. The present study explores the calculation of NDOI with a primary focus on leveraging remotely sensed imagery with rich spectral data. This undertaking necessitates a robust infrastructure to handle and process large datasets, thereby demanding significant memory resources and ensuring scalability. To overcome these challenges, a novel cloud-based approach is proposed in this study to conduct the distributed implementation of the NDOI calculation. This approach offers an accessible and intuitive solution, empowering developers to harness the benefits of cloud platforms. The evaluation of the proposal is conducted by assessing its performance using the scene acquired by the airborne visible infrared imaging spectrometer (AVIRIS) sensor during the 2010 oil rig disaster in the Gulf of Mexico. The catastrophic nature of the event and the subsequent challenges underscore the importance of remote sensing (RS) in facilitating decision-making processes. In this context, cloud-based approaches have emerged as a prominent technological advancement in the RS field. The experimental results demonstrate noteworthy performance by the proposed cloud-based approach and pave the path for future research for fast decision-making applications in scalable environments. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | en_US |
dc.source | Ieee Journal Of Selected Topics In Applied Earth Observations And Remote Sensing[ISSN 1939-1404],v. 17, p. 2461-2474, (2024) | en_US |
dc.subject | 33 Ciencias tecnológicas | en_US |
dc.subject.other | Cloud computing (CC) | en_US |
dc.subject.other | disaster monitoring | en_US |
dc.subject.other | hyperspectral images (HSIs) | en_US |
dc.subject.other | remote sensing (RS) | en_US |
dc.subject.other | spectral indices | en_US |
dc.title | Cloud-Based Analysis of Large-Scale Hyperspectral Imagery for Oil Spill Detection | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1109/JSTARS.2023.3344022 | en_US |
dc.identifier.scopus | 2-s2.0-85181575348 | - |
dc.identifier.isi | 001140808700001 | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.identifier.eissn | 2151-1535 | - |
dc.description.lastpage | 2474 | en_US |
dc.description.firstpage | 2461 | en_US |
dc.relation.volume | 17 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.contributor.daisngid | 1890536 | - |
dc.contributor.daisngid | 2325183 | - |
dc.contributor.daisngid | 1638480 | - |
dc.contributor.daisngid | 38037829 | - |
dc.contributor.daisngid | 1891623 | - |
dc.identifier.external | 150215359 | - |
dc.description.numberofpages | 14 | en_US |
dc.utils.revision | Sí | en_US |
dc.contributor.wosstandard | WOS:Haut, JM | - |
dc.contributor.wosstandard | WOS:Moreno-Alvarez, S | - |
dc.contributor.wosstandard | WOS:Pastor-Vargas, R | - |
dc.contributor.wosstandard | WOS:Perez-Garcia, A | - |
dc.contributor.wosstandard | WOS:Paoletti, ME | - |
dc.date.coverdate | 2024 | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-TEL | en_US |
dc.description.sjr | 1,434 | |
dc.description.jcr | 5,5 | |
dc.description.sjrq | Q1 | |
dc.description.jcrq | Q1 | |
dc.description.scie | SCIE | |
dc.description.miaricds | 10,6 | |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.author.dept | GIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos | - |
crisitem.author.dept | IU de Microelectrónica Aplicada | - |
crisitem.author.orcid | 0000-0002-2943-6348 | - |
crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
crisitem.author.fullName | Pérez García, Ámbar | - |
Appears in Collections: | Artículos |
SCOPUSTM
Citations
4
checked on Nov 24, 2024
WEB OF SCIENCETM
Citations
2
checked on Nov 24, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.