Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/127467
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Perdomo, Francisco | en_US |
dc.contributor.author | Plaza, Ángel | en_US |
dc.date.accessioned | 2023-11-02T18:07:08Z | - |
dc.date.available | 2023-11-02T18:07:08Z | - |
dc.date.issued | 2023 | en_US |
dc.identifier.issn | 2075-1680 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/127467 | - |
dc.description.abstract | This paper studies the triangle similarity classes obtained by iterative application of the longest-edge trisection of triangles. The longest-edge trisection (3T-LE) of a triangle is obtained by joining the two points which divide the longest edge in three equal parts with the opposite vertex. This partition, as well as the longest-edge bisection (2T-LE), does not degenerate, which means that there is a positive lower bound to the minimum angle generated. However, unlike what happens with the 2T-LE, the number of similarity classes appearing by the iterative application of the 3T-LE to a single initial triangle is not finite in general. There are only three exceptions to this fact: the right triangle with its sides in the ratio 1:√2:√3 and the other two triangles in its orbit. This result, although of a combinatorial nature, is proved here with the machinery of discrete dynamics in a triangle shape space with hyperbolic metric. It is also shown that for a point with an infinite orbit, infinite points of the orbit are in three circles with centers at the points with finite orbits. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | Axioms | en_US |
dc.source | Axioms 2023, vol. 12(10), 913 (2023) | en_US |
dc.subject | 12 Matemáticas | en_US |
dc.subject | 120601 Construcción de algoritmos | en_US |
dc.subject.other | Longest-edge partition | en_US |
dc.subject.other | Trisection | en_US |
dc.subject.other | Triangulation | en_US |
dc.title | Similarity classes of the longest-edge trisection of triangles | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.3390/axioms12100913 | en_US |
dc.identifier.issue | 10 | - |
dc.relation.volume | 12 | en_US |
dc.investigacion | Ciencias | en_US |
dc.type2 | Artículo | en_US |
dc.description.numberofpages | 12 | en_US |
dc.utils.revision | Sí | en_US |
dc.date.coverdate | September 2023 | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-INF | en_US |
dc.description.sjr | nan | |
dc.description.jcr | 2,0 | |
dc.description.sjrq | - | |
dc.description.jcrq | Q2 | |
dc.description.esci | ESCI | |
item.fulltext | Con texto completo | - |
item.grantfulltext | open | - |
crisitem.author.dept | GIR IUMA: Matemáticas, Gráficos y Computación | - |
crisitem.author.dept | IU de Microelectrónica Aplicada | - |
crisitem.author.dept | Departamento de Matemáticas | - |
crisitem.author.orcid | 0000-0002-5077-6531 | - |
crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
crisitem.author.fullName | Perdomo Peña, Francisco | - |
crisitem.author.fullName | Plaza De La Hoz, Ángel | - |
Colección: | Artículos |
Visitas
123
actualizado el 31-oct-2024
Descargas
20
actualizado el 31-oct-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.