Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/127467
Campo DC Valoridioma
dc.contributor.authorPerdomo, Franciscoen_US
dc.contributor.authorPlaza, Ángelen_US
dc.date.accessioned2023-11-02T18:07:08Z-
dc.date.available2023-11-02T18:07:08Z-
dc.date.issued2023en_US
dc.identifier.issn2075-1680en_US
dc.identifier.urihttp://hdl.handle.net/10553/127467-
dc.description.abstractThis paper studies the triangle similarity classes obtained by iterative application of the longest-edge trisection of triangles. The longest-edge trisection (3T-LE) of a triangle is obtained by joining the two points which divide the longest edge in three equal parts with the opposite vertex. This partition, as well as the longest-edge bisection (2T-LE), does not degenerate, which means that there is a positive lower bound to the minimum angle generated. However, unlike what happens with the 2T-LE, the number of similarity classes appearing by the iterative application of the 3T-LE to a single initial triangle is not finite in general. There are only three exceptions to this fact: the right triangle with its sides in the ratio 1:√2:√3 and the other two triangles in its orbit. This result, although of a combinatorial nature, is proved here with the machinery of discrete dynamics in a triangle shape space with hyperbolic metric. It is also shown that for a point with an infinite orbit, infinite points of the orbit are in three circles with centers at the points with finite orbits.en_US
dc.languageengen_US
dc.relation.ispartofAxiomsen_US
dc.sourceAxioms 2023, vol. 12(10), 913 (2023)en_US
dc.subject12 Matemáticasen_US
dc.subject120601 Construcción de algoritmosen_US
dc.subject.otherLongest-edge partitionen_US
dc.subject.otherTrisectionen_US
dc.subject.otherTriangulationen_US
dc.titleSimilarity classes of the longest-edge trisection of trianglesen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/axioms12100913en_US
dc.identifier.issue10-
dc.relation.volume12en_US
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.description.numberofpages12en_US
dc.utils.revisionen_US
dc.date.coverdateSeptember 2023en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
dc.description.sjrnan
dc.description.jcr2,0
dc.description.sjrq-
dc.description.jcrqQ2
dc.description.esciESCI
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR IUMA: Matemáticas, Gráficos y Computación-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.orcid0000-0002-5077-6531-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNamePerdomo Peña, Francisco-
crisitem.author.fullNamePlaza De La Hoz, Ángel-
Colección:Artículos
Adobe PDF (1,38 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.