Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/127467
DC FieldValueLanguage
dc.contributor.authorPerdomo, Franciscoen_US
dc.contributor.authorPlaza, Ángelen_US
dc.date.accessioned2023-11-02T18:07:08Z-
dc.date.available2023-11-02T18:07:08Z-
dc.date.issued2023en_US
dc.identifier.issn2075-1680en_US
dc.identifier.urihttp://hdl.handle.net/10553/127467-
dc.description.abstractThis paper studies the triangle similarity classes obtained by iterative application of the longest-edge trisection of triangles. The longest-edge trisection (3T-LE) of a triangle is obtained by joining the two points which divide the longest edge in three equal parts with the opposite vertex. This partition, as well as the longest-edge bisection (2T-LE), does not degenerate, which means that there is a positive lower bound to the minimum angle generated. However, unlike what happens with the 2T-LE, the number of similarity classes appearing by the iterative application of the 3T-LE to a single initial triangle is not finite in general. There are only three exceptions to this fact: the right triangle with its sides in the ratio 1:√2:√3 and the other two triangles in its orbit. This result, although of a combinatorial nature, is proved here with the machinery of discrete dynamics in a triangle shape space with hyperbolic metric. It is also shown that for a point with an infinite orbit, infinite points of the orbit are in three circles with centers at the points with finite orbits.en_US
dc.languageengen_US
dc.relation.ispartofAxiomsen_US
dc.sourceAxioms 2023, vol. 12(10), 913 (2023)en_US
dc.subject12 Matemáticasen_US
dc.subject120601 Construcción de algoritmosen_US
dc.subject.otherLongest-edge partitionen_US
dc.subject.otherTrisectionen_US
dc.subject.otherTriangulationen_US
dc.titleSimilarity classes of the longest-edge trisection of trianglesen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/axioms12100913en_US
dc.identifier.issue10-
dc.relation.volume12en_US
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.description.numberofpages12en_US
dc.utils.revisionen_US
dc.date.coverdateSeptember 2023en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
dc.description.sjrnan
dc.description.jcr1,9
dc.description.sjrq-
dc.description.jcrqQ1
dc.description.esciESCI
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR IUMA: Matemáticas, Gráficos y Computación-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.orcid0000-0002-5077-6531-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNamePerdomo Peña, Francisco-
crisitem.author.fullNamePlaza De La Hoz, Ángel-
Appears in Collections:Artículos
Adobe PDF (1,38 MB)
Show simple item record

Page view(s)

123
checked on Oct 31, 2024

Download(s)

20
checked on Oct 31, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.