Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/127467
Título: Similarity classes of the longest-edge trisection of triangles
Autores/as: Perdomo, Francisco 
Plaza, Ángel 
Clasificación UNESCO: 12 Matemáticas
120601 Construcción de algoritmos
Palabras clave: Longest-edge partition
Trisection
Triangulation
Fecha de publicación: 2023
Publicación seriada: Axioms 
Resumen: This paper studies the triangle similarity classes obtained by iterative application of the longest-edge trisection of triangles. The longest-edge trisection (3T-LE) of a triangle is obtained by joining the two points which divide the longest edge in three equal parts with the opposite vertex. This partition, as well as the longest-edge bisection (2T-LE), does not degenerate, which means that there is a positive lower bound to the minimum angle generated. However, unlike what happens with the 2T-LE, the number of similarity classes appearing by the iterative application of the 3T-LE to a single initial triangle is not finite in general. There are only three exceptions to this fact: the right triangle with its sides in the ratio 1:√2:√3 and the other two triangles in its orbit. This result, although of a combinatorial nature, is proved here with the machinery of discrete dynamics in a triangle shape space with hyperbolic metric. It is also shown that for a point with an infinite orbit, infinite points of the orbit are in three circles with centers at the points with finite orbits.
URI: http://hdl.handle.net/10553/127467
ISSN: 2075-1680
DOI: 10.3390/axioms12100913
Fuente: Axioms 2023, vol. 12(10), 913 (2023)
Colección:Artículos
Adobe PDF (1,38 MB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.