Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/127428
Título: On the Use of First and Second Derivative Approximations for Biometric Online Signature Recognition
Autores/as: Faundez-Zanuy, Marcos
Díaz Cabrera, Moisés 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Derivatives
Dynamic Time Warping
E-Security
Online Handwriting
Fecha de publicación: 2023
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 17th International Work-Conference on Artificial Neural Networks, IWANN 2023
Resumen: This paper investigates the impact of different approximation methods in feature extraction for pattern recognition applications, specifically focused on delta and delta-delta parameters. Using MCYT330 online signature database, our experiments show that 11-point approximation outperforms 1-point approximation, resulting in a 1.4% improvement in identification rate, 36.8% reduction in random forgeries and 2.4% reduction in skilled forgeries.
URI: http://hdl.handle.net/10553/127428
ISBN: 9783031430848
ISSN: 0302-9743
DOI: 10.1007/978-3-031-43085-5_36
Fuente: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics )[ISSN 0302-9743],v. 14134 LNCS, p. 461-472, (Enero 2023)
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

3
actualizado el 22-dic-2024

Citas de WEB OF SCIENCETM
Citations

1
actualizado el 22-dic-2024

Visitas

26
actualizado el 27-abr-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.