Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/127428
DC FieldValueLanguage
dc.contributor.authorFaundez-Zanuy, Marcosen_US
dc.contributor.authorDíaz Cabrera, Moisésen_US
dc.date.accessioned2023-10-30T14:10:10Z-
dc.date.available2023-10-30T14:10:10Z-
dc.date.issued2023en_US
dc.identifier.isbn9783031430848en_US
dc.identifier.issn0302-9743en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/127428-
dc.description.abstractThis paper investigates the impact of different approximation methods in feature extraction for pattern recognition applications, specifically focused on delta and delta-delta parameters. Using MCYT330 online signature database, our experiments show that 11-point approximation outperforms 1-point approximation, resulting in a 1.4% improvement in identification rate, 36.8% reduction in random forgeries and 2.4% reduction in skilled forgeries.-
dc.languageengen_US
dc.relation.ispartofLecture Notes in Computer Scienceen_US
dc.sourceLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics )[ISSN 0302-9743],v. 14134 LNCS, p. 461-472, (Enero 2023)en_US
dc.subject3307 Tecnología electrónica-
dc.subject.otherDerivatives-
dc.subject.otherDynamic Time Warping-
dc.subject.otherE-Security-
dc.subject.otherOnline Handwriting-
dc.titleOn the Use of First and Second Derivative Approximations for Biometric Online Signature Recognitionen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference17th International Work-Conference on Artificial Neural Networks, IWANN 2023en_US
dc.identifier.doi10.1007/978-3-031-43085-5_36en_US
dc.identifier.scopus85174503559-
dc.identifier.isi001155313400036-
dc.contributor.orcid0000-0003-0605-1282-
dc.contributor.orcid0000-0003-3878-3867-
dc.contributor.authorscopusid57238059400-
dc.contributor.authorscopusid58552611900-
dc.identifier.eissn1611-3349-
dc.description.lastpage472en_US
dc.description.firstpage461en_US
dc.relation.volume14134 LNCSen_US
dc.investigacionCiencias-
dc.type2Actas de congresosen_US
dc.contributor.daisngid912728-
dc.contributor.daisngid1137937-
dc.description.numberofpages12en_US
dc.utils.revision-
dc.contributor.wosstandardWOS:Faundez-Zanuy, M-
dc.contributor.wosstandardWOS:Diaz, M-
dc.date.coverdateEnero 2023en_US
dc.identifier.conferenceidevents150445-
dc.identifier.ulpgc-
dc.contributor.buulpgcBU-BASen_US
dc.description.sjr0,606-
dc.description.sjrqQ2-
dc.description.miaricds10,0-
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Física-
crisitem.author.orcid0000-0003-3878-3867-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameDíaz Cabrera, Moisés-
Appears in Collections:Actas de congresos
Show simple item record

SCOPUSTM   
Citations

3
checked on Nov 17, 2024

Page view(s)

26
checked on Apr 27, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.