Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/127365
DC FieldValueLanguage
dc.contributor.authorGarcía Sosa, Alejandroen_US
dc.contributor.authorQuintana Hernández, José Juanen_US
dc.contributor.authorFerrer Ballester, Miguel Ángelen_US
dc.contributor.authorCarmona Duarte, María Cristinaen_US
dc.date.accessioned2023-10-24T08:54:53Z-
dc.date.available2023-10-24T08:54:53Z-
dc.date.issued2023en_US
dc.identifier.isbn978-972-778-328-1en_US
dc.identifier.urihttp://hdl.handle.net/10553/127365-
dc.description.abstractSensors and Artificial Intelligence (AI) have revolutionized the analysis of human movement, but the scarcity of specific samples presents a significant challenge in training intelligent systems, particularly in the context of diagnosing neurodegenerative diseases. This study investigates the feasibility of utilizing robot-collected data to train classification systems traditionally trained with human-collected data. As a proof of concept, we recorded a database of numeric characters using an ABB robotic arm and an Apple Watch. We compare the classification performance of the trained systems using both human-recorded and robot-recorded data. Our primary objective is to determine the potential for accurate identification of human numeric characters wearing a smartwatch using robotic movement as training data. The findings of this study offer valuable insights into the feasibility of using robot-collected data for training classification systems. This research holds broad implications across various domains that require reliable identification, particularly in scenarios where access to human-specific data is limited.en_US
dc.languageengen_US
dc.relationModelo Computacional Del Aprendizajey la Degeneración Del Movimiento Humano Para Su Aplicación en Diagnóstico Clínicoen_US
dc.source21st Conference of the International Graphonomics Society (IGS2023), p. 116-120.en_US
dc.subject33 Ciencias tecnológicasen_US
dc.titleExploring the Potential of Robot-Collected Data for Training Gesture Classification Systemsen_US
dc.typeinfo:eu-repo/semantics/conferenceobjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference21st Conference of the International Graphonomics Society (IGS2023)en_US
dc.description.lastpage120en_US
dc.description.firstpage116en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.description.numberofpages5en_US
dc.utils.revisionen_US
dc.date.coverdate16/10/2023en_US
dc.identifier.conferenceidhttps://drive.google.com/file/d/1TBhmMWvryNv9sW5PUsUp0MIAieStXV3N/view-
dc.identifier.ulpgcNoen_US
dc.contributor.buulpgcBU-INGen_US
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0003-1166-6257-
crisitem.author.orcid0000-0002-2924-1225-
crisitem.author.orcid0000-0002-4441-6652-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameGarcía Sosa, Alejandro-
crisitem.author.fullNameQuintana Hernández, José Juan-
crisitem.author.fullNameFerrer Ballester, Miguel Ángel-
crisitem.author.fullNameCarmona Duarte, María Cristina-
crisitem.project.principalinvestigatorCarmona Duarte, María Cristina-
Appears in Collections:Actas de congresos
Adobe PDF (1,8 MB)
Show simple item record

Page view(s)

59
checked on Apr 6, 2024

Download(s)

23
checked on Apr 6, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.