Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/127365
DC Field | Value | Language |
---|---|---|
dc.contributor.author | García Sosa, Alejandro | en_US |
dc.contributor.author | Quintana Hernández, José Juan | en_US |
dc.contributor.author | Ferrer Ballester, Miguel Ángel | en_US |
dc.contributor.author | Carmona Duarte, María Cristina | en_US |
dc.date.accessioned | 2023-10-24T08:54:53Z | - |
dc.date.available | 2023-10-24T08:54:53Z | - |
dc.date.issued | 2023 | en_US |
dc.identifier.isbn | 978-972-778-328-1 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/127365 | - |
dc.description.abstract | Sensors and Artificial Intelligence (AI) have revolutionized the analysis of human movement, but the scarcity of specific samples presents a significant challenge in training intelligent systems, particularly in the context of diagnosing neurodegenerative diseases. This study investigates the feasibility of utilizing robot-collected data to train classification systems traditionally trained with human-collected data. As a proof of concept, we recorded a database of numeric characters using an ABB robotic arm and an Apple Watch. We compare the classification performance of the trained systems using both human-recorded and robot-recorded data. Our primary objective is to determine the potential for accurate identification of human numeric characters wearing a smartwatch using robotic movement as training data. The findings of this study offer valuable insights into the feasibility of using robot-collected data for training classification systems. This research holds broad implications across various domains that require reliable identification, particularly in scenarios where access to human-specific data is limited. | en_US |
dc.language | eng | en_US |
dc.relation | Modelo Computacional Del Aprendizajey la Degeneración Del Movimiento Humano Para Su Aplicación en Diagnóstico Clínico | en_US |
dc.source | 21st Conference of the International Graphonomics Society (IGS2023), p. 116-120. | en_US |
dc.subject | 33 Ciencias tecnológicas | en_US |
dc.title | Exploring the Potential of Robot-Collected Data for Training Gesture Classification Systems | en_US |
dc.type | info:eu-repo/semantics/conferenceobject | en_US |
dc.type | ConferenceObject | en_US |
dc.relation.conference | 21st Conference of the International Graphonomics Society (IGS2023) | en_US |
dc.description.lastpage | 120 | en_US |
dc.description.firstpage | 116 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Actas de congresos | en_US |
dc.description.numberofpages | 5 | en_US |
dc.utils.revision | Sí | en_US |
dc.date.coverdate | 16/10/2023 | en_US |
dc.identifier.conferenceid | https://drive.google.com/file/d/1TBhmMWvryNv9sW5PUsUp0MIAieStXV3N/view | - |
dc.identifier.ulpgc | No | en_US |
dc.contributor.buulpgc | BU-ING | en_US |
item.grantfulltext | open | - |
item.fulltext | Con texto completo | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Ingeniería Electrónica y Automática | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.orcid | 0000-0003-1166-6257 | - |
crisitem.author.orcid | 0000-0002-2924-1225 | - |
crisitem.author.orcid | 0000-0002-4441-6652 | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.fullName | García Sosa, Alejandro | - |
crisitem.author.fullName | Quintana Hernández, José Juan | - |
crisitem.author.fullName | Ferrer Ballester, Miguel Ángel | - |
crisitem.author.fullName | Carmona Duarte, María Cristina | - |
crisitem.project.principalinvestigator | Carmona Duarte, María Cristina | - |
Appears in Collections: | Actas de congresos |
Page view(s)
59
checked on Apr 6, 2024
Download(s)
23
checked on Apr 6, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.