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Abstract. Sensors and Artificial Intelligence (AI) have revolutionized the analysis of human move-
ment, but the scarcity of specific samples presents a significant challenge in training intelligent sys-
tems, particularly in the context of diagnosing neurodegenerative diseases. This study investigates
the feasibility of utilizing robot-collected data to train classification systems traditionally trained
with human-collected data. As a proof of concept, we recorded a database of numeric characters
using an ABB robotic arm and an Apple Watch. We compare the classification performance of the
trained systems using both human-recorded and robot-recorded data. Our primary objective is to
determine the potential for accurate identification of human numeric characters wearing a smart-
watch using robotic movement as training data. The findings of this study offer valuable insights
into the feasibility of using robot-collected data for training classification systems. This research
holds broad implications across various domains that require reliable identification, particularly in
scenarios where access to human-specific data is limited.

1. Introduction
Nowadays, sensors of different kinds are now widespread throughout every aspect of our lives.Among
others, we can find an accelerometer o inertial measurement units (IMUs) in our mobile devices (phones,
smartwatches, and nearly every portable electronic gadget).
These IMUs provide considerable information about the user, enabling a wide range of applications. One
example is their use as Human-Machine Interfaces (HMI), allowing actions such as answering a phone
call by merely moving the phone close to the ear or drawing in the air using gestures.
In the medical field, several studies utilize IMUs for detecting neurodegenerative diseases (Bensalah et al.
(2022)), aiding in the rehabilitation process after a stroke (Bensalah et al. (2021)), or as Computer-Aided
Diagnosis. These studies rely on Artificial Intelligence (AI) classifiers, such as Neural Networks or Support
Vector Machines.
Both using IMUs as HMI and for Computer-Aided Diagnosis requires training to recognize specific pat-
terns in order to correctly identify human gestures in real environments, not just in small isolated tests.
However, obtaining data for such situations from humans can be highly specific and challenging.
Using robots to address the scarcity of data may prove useful, as robots can be programmed to mimic
human movements. Not only can they imitate the movements of healthy individuals, but with the correct
parameterization for specific conditions, we can replicate movements seen in individuals with Parkinson’s
disease, ADHD, and other conditions. This approach could help create substantial databases for training
AI systems, with tens or hundreds of thousands of samples, without the need to search for humans with
specific characteristics. To achieve this, it will be necessary to synthesize and adjust the robot accurately
to replicate human-like movements as closely as possible. Previous studies regarding classification using
IMU-recorded data, some of them about numeric character classification (Wang and Chuang (2012); Kim
et al. (2019)), have a limitation in the database.
To our knowledge, no other studies about the classification of human movement using robotic move-
ments for training have been done previously. There are other studies using non-human data for training
intelligence-based systems using Virtual Reality (Bui and Alaei (2022)).
Our aim in this paper is to explore whether is possible to train gesture classification systems meant to
classify human gestures using only robot gestures. In order to do that, we are recording a database of
numeric characters using both a human and a robotic arm, and we are training a classifier using that
database.

2. Methodology
2.1 Database
To train the classifier and determine if it is feasible to train it with robotic data, we require data from
both robots and humans for training and validation purposes.
To record the database, an Apple Watch Series 6, and the application WData, developed by our team
was used. The data is recorded with a sampling rate of 100 Hz. WData is an app available for testing on
TestFlight that allows data to be captured from the watch’s IMU at a sampling rate of 100 Hz. It makes



use of the CMMotionManager tool, which allows the app to extract acceleration, device altitude, rotation
speed, calibrated magnetic fields, and gravity direction from the recorded data. The data collected by the
watch is sent to a mobile phone, which then uploads it to iCloud, where it can be accessed from a laptop
or PC.
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Fig. 1. Robot used in the experiments with the smartwatch.

The human data consists of 100 samples, with 10 samples for each number from 0 to 9. On the other
hand, for the robotic movement database, 81 samples of each number were generated and recorded using
an ABB IRB120 (see Figure 1). Each sample has a different combination of velocity, wrist angle, size,
and rotation, with three variations for each parameter. Both human and robot data were captured with
the watch IMU sensors.
To simulate human movement with the robot, it has to be programmed. To this end, human samples were
captured by drawing each number ten times, at different velocities and sizes, using wire-type distance
sensors. The velocitiy profiles for each number were visually compared, and the ones with less noise
for each number were chosen. The recorded data consisted of the coordinates in the three Cartesian
axes with a sampling rate of 200Hz (Quintana et al. (2022)). Once the trajectory data was obtained,
the procedure followed for the robot to reproduce each combination is as follows: First, the sampling
frequency was reduced from 200Hz to 42Hz. Then, for each of the points (x, y, z) of the trajectory, its
inverse kinematics was calculated to obtain the equivalent position of each of the robot’s joints. Finally,
the temporal sequences of joint positions were transferred to the robot, which executed them while the
watch captured the data.
After a visual comparison of the human data and the robotic data, some differences were detected in the
rotation of the numbers. Since the original robot wrist was set to be parallel to the floor, it needed to
be adjusted. After conducting several tests with different rotations, the robotic dataset was re-recorded,
incorporating a 60º rotation in the Y-axis, a 5º rotation in the Z-axis, and a 20º rotation in the X-axis.
These rotations were intended to represent the natural human wrist position.
This data was segmented into individual characters and also passed through a low-pass filter of 20 Hz
in order to reduce the noise created by the residual movements of both the human and the robot. In
Figure 2, we can observe the signals obtained reproducing the number 2 by a human and by a robot.
Each sample had a length ranging from 2 to 4 seconds. In order to use a simple classifier, each file was
downsampled to 100 samples in each axis using the Fourier method, for a total of 300 samples per file.

2.2 Classification
We have chosen to use a multilayer perceptron (MLP) as our classifier, as it is commonly used as a
classifier and has been used previously in gesture classification (Holzbock et al. (2023); Hossain et al.
(2023); Amit et al. (2022)). The chosen MLP has 3 layers. An input layer, a hidden layer, and an output
layer. The nodes on the hidden layer were selected using experimental data to find an optimal distribution.
Since we are working with a small volume of data, we have opted against using a larger MLP or other
classifiers, since it could lead to overtraining.
The adopted MLP architecture receives 300 inputs. Three different sets of inputs were evaluated. These
are the acceleration, the velocity, and the trajectory, all in the three cartesian axes. The first 100 inputs
are the X axis, the second 100 are the Y axis, and the last 100, are the Z axis. Three different models
were created, all with the same architecture, in order to compare the three signals as inputs.



(a) Robot acceleration. (b) Human acceleration.

(c) Robot velocity. (d) Human velocity.

(e) Robot trajectory. (f) Human trajectory.

Fig. 2. Comparison between Human and Robot’s signals

In order to train the MLP, each model was trained 100 times. Each iteration was an independent training,
with 20 epochs, with an early stopping after 10 epochs without improvements, and where a random 20% of
the robotic data was selected for validation, and the 80% left was used as training data. At each iteration,
the initial weights of the network were the ones obtained from the previous training. The human data
was only used for the test dataset, in order to avoid possible bias in the training. In each iteration, the
accuracy, the loss, and the confusion matrix were obtained. After the training was finished, the average
and standard deviation were calculated for accuracy.

3. Results
After training the MLP using the acceleration, velocity, and trajectory, confusion matrixes shown in
Tables 1, 2 and 3 were computed.
If we utilize the acceleration data, as presented in Table 1, the classifier demonstrates the highest accuracy
in correctly classifying characters 0, 4, 1, and 5, all of which have over 69% of accurate classifications
during the training process. However, characters 9 and 6 are the least accurately classified, with less than
1% accuracy in the case of character 9, as it frequently misclassifies the 9 as a 4.
Using the velocity, as shown in Table 2, it classifies with less than a 10% error the numbers 5, 2, and
0. In this case, the numbers from 6 to 9 are the less accurate, this time with an average of about 30%
accuracy in each number.
Lastly, with the trajectory in Table 3, if we compare with the velocity results we have some improvements
in the second half of the numbers, with the exception being the 6, with it being heavily mistaken for the
0. As for the first half, they all have lost some accuracy, with the 3 being the most affected overall.
Comparing the 3 tables, using the velocity for classifying the characters gives us slightly better results
than using the acceleration or the trajectory.

4. Conclusion
In this paper, we have explored the feasibility of using robotic movement data as a substitute for training
data. Although our results are lower compared to other studies on classifying numeric characters, it



Table 1. Acceleration
0 1 2 3 4 5 6 7 8 9

0 90% 0% 0% 1% 9.9% 1.2% 76% 0% 0% 0%

1 0% 79.7% 0.6% 2.3% 9% 0.4% 0% 65% 0.2% 9.6%

2 0% 0.6% 42.4% 14.6% 0% 0% 0% 2.4% 39.3% 0.4%

3 9.9% 0% 11.1% 59.1% 0% 15.6% 0% 0% 0% 0%

4 0% 1.4% 0% 0% 78.9% 0% 0% 0.7% 12.1% 83.6%

5 0% 0% 0% 9.2% 0.1% 69.3% 0% 0% 0% 4.9%

6 0.1% 0.1% 14.8% 11.4% 0% 0% 24% 0% 0% 0%

7 0% 18.2% 15.8% 0% 0.1% 0% 0% 31.9% 0% 0%

8 0% 0% 10% 2.4% 1.6% 13.5% 0% 0% 38.5% 0.7%

9 0% 0% 5.3% 0% 0.4% 0% 0% 0% 9.9% 0.8%

Total 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Average accuracy: 51.46% STD: 28.60

Table 2. Velocity

0 1 2 3 4 5 6 7 8 9

0 90% 0% 0% 0% 0.9% 0% 69.4% 0% 0.9% 0%

1 0% 75% 0% 23.5% 9.1% 0% 0% 70.9% 0% 9.5%

2 0% 0% 91.1% 0% 10% 0% 0% 0% 68.6% 0%

3 9.7% 0% 0% 75.6% 0% 0% 0% 0% 0% 0%

4 0% 0% 0% 0% 80% 0% 0.1% 0% 0% 53.8%

5 0% 0% 0% 0% 0% 99.5% 0.1% 0% 0% 0.8%

6 0.3% 0% 0.3% 0% 0% 0% 30.3% 0% 0.2% 0%

7 0% 6.6% 8.6% 0% 0% 0% 0% 29.1% 0% 0%

8 0% 0% 0% 0.6% 0% 0% 0.1% 0% 30.3% 0%

9 0% 18.4% 0% 0.3% 0% 0.5% 0% 0% 0% 35.9%

Total 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Average accuracy: 63.68% TD: 28.79

Table 3. Trajectory

0 1 2 3 4 5 6 7 8 9

0 85.9% 0% 0% 0% 0% 0% 81.4% 0% 27.6% 0%

1 0% 71.8% 0% 0% 25.5% 0% 0% 38.3% 0% 10%

2 0% 0% 80.3% 0% 0% 0% 0% 0% 0% 0%

3 1.6% 0% 0% 28.8% 3.9% 0% 0.8% 0% 0.6% 0%

4 0% 0% 0% 0% 52.8% 0% 0% 0% 0% 30.7%

5 4.4% 8.6% 0% 0% 5.5% 99% 0% 5.2% 0% 7.4%

6 0.2% 0% 8.1% 0% 0% 0% 8% 0% 2.7% 0%

7 5.6% 10.1% 0% 45.4% 2.1% 0% 0% 56.5% 0% 12.6%

8 2.3% 0% 11.6% 25.8% 0.4% 1% 9.8% 0% 69.1% 0%

9 0% 9.5% 0% 0% 9.8% 0% 0% 0% 0% 39.3%

Total 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Average accuracy: 59.15% STD: 27.86

is important to note that our study focuses on determining whether it is possible to classify human
movement using only robotic motion. With further investigation in this area, we expect to obtain better
results, demonstrating the feasibility of using non-human data in human motion databases.

Currently, we are working on improving the results by conducting a more in-depth analysis of human
movements and refining the calibration of the robotic arm to accurately replicate the anatomy of the
human hand and arm, as humans don’t write in a vertical plane with their arm fully extended naturally,
as our natural position when we write in a vertical plane is with the elbow bent and a slight rotation and
inclination in the wrist. Additionally, we are experimenting with different classification systems, such as
Dynamic Time Warping based classifiers or Support Vector Machines, to examine how different classifiers
may respond, as well as studying how using different proportions of human and robot data affect the
classification systems
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