Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/127365
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | García Sosa, Alejandro | en_US |
dc.contributor.author | Quintana Hernández, José Juan | en_US |
dc.contributor.author | Ferrer Ballester, Miguel Ángel | en_US |
dc.contributor.author | Carmona Duarte, María Cristina | en_US |
dc.date.accessioned | 2023-10-24T08:54:53Z | - |
dc.date.available | 2023-10-24T08:54:53Z | - |
dc.date.issued | 2023 | en_US |
dc.identifier.isbn | 978-972-778-328-1 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/127365 | - |
dc.description.abstract | Sensors and Artificial Intelligence (AI) have revolutionized the analysis of human movement, but the scarcity of specific samples presents a significant challenge in training intelligent systems, particularly in the context of diagnosing neurodegenerative diseases. This study investigates the feasibility of utilizing robot-collected data to train classification systems traditionally trained with human-collected data. As a proof of concept, we recorded a database of numeric characters using an ABB robotic arm and an Apple Watch. We compare the classification performance of the trained systems using both human-recorded and robot-recorded data. Our primary objective is to determine the potential for accurate identification of human numeric characters wearing a smartwatch using robotic movement as training data. The findings of this study offer valuable insights into the feasibility of using robot-collected data for training classification systems. This research holds broad implications across various domains that require reliable identification, particularly in scenarios where access to human-specific data is limited. | en_US |
dc.language | eng | en_US |
dc.relation | Modelo Computacional Del Aprendizajey la Degeneración Del Movimiento Humano Para Su Aplicación en Diagnóstico Clínico | en_US |
dc.source | 21st Conference of the International Graphonomics Society (IGS2023), p. 116-120. | en_US |
dc.subject | 33 Ciencias tecnológicas | en_US |
dc.title | Exploring the Potential of Robot-Collected Data for Training Gesture Classification Systems | en_US |
dc.type | info:eu-repo/semantics/conferenceobject | en_US |
dc.type | ConferenceObject | en_US |
dc.relation.conference | 21st Conference of the International Graphonomics Society (IGS2023) | en_US |
dc.description.lastpage | 120 | en_US |
dc.description.firstpage | 116 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Actas de congresos | en_US |
dc.description.numberofpages | 5 | en_US |
dc.utils.revision | Sí | en_US |
dc.date.coverdate | 16/10/2023 | en_US |
dc.identifier.conferenceid | https://drive.google.com/file/d/1TBhmMWvryNv9sW5PUsUp0MIAieStXV3N/view | - |
dc.identifier.ulpgc | No | en_US |
dc.contributor.buulpgc | BU-ING | en_US |
item.grantfulltext | open | - |
item.fulltext | Con texto completo | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Ingeniería Electrónica y Automática | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.orcid | 0000-0003-1166-6257 | - |
crisitem.author.orcid | 0000-0002-2924-1225 | - |
crisitem.author.orcid | 0000-0002-4441-6652 | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.fullName | García Sosa, Alejandro | - |
crisitem.author.fullName | Quintana Hernández, José Juan | - |
crisitem.author.fullName | Ferrer Ballester, Miguel Ángel | - |
crisitem.author.fullName | Carmona Duarte, María Cristina | - |
crisitem.project.principalinvestigator | Carmona Duarte, María Cristina | - |
Colección: | Actas de congresos |
Visitas
59
actualizado el 06-abr-2024
Descargas
23
actualizado el 06-abr-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.