Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/127365
Título: Exploring the Potential of Robot-Collected Data for Training Gesture Classification Systems
Autores/as: García Sosa, Alejandro 
Quintana Hernández, José Juan 
Ferrer Ballester, Miguel Ángel 
Carmona Duarte, María Cristina 
Clasificación UNESCO: 33 Ciencias tecnológicas
Fecha de publicación: 2023
Proyectos: Modelo Computacional Del Aprendizajey la Degeneración Del Movimiento Humano Para Su Aplicación en Diagnóstico Clínico 
Conferencia: 21st Conference of the International Graphonomics Society (IGS2023) ItemCrisRefDisplayStrategy.events.deleted.icon
Resumen: Sensors and Artificial Intelligence (AI) have revolutionized the analysis of human movement, but the scarcity of specific samples presents a significant challenge in training intelligent systems, particularly in the context of diagnosing neurodegenerative diseases. This study investigates the feasibility of utilizing robot-collected data to train classification systems traditionally trained with human-collected data. As a proof of concept, we recorded a database of numeric characters using an ABB robotic arm and an Apple Watch. We compare the classification performance of the trained systems using both human-recorded and robot-recorded data. Our primary objective is to determine the potential for accurate identification of human numeric characters wearing a smartwatch using robotic movement as training data. The findings of this study offer valuable insights into the feasibility of using robot-collected data for training classification systems. This research holds broad implications across various domains that require reliable identification, particularly in scenarios where access to human-specific data is limited.
URI: http://hdl.handle.net/10553/127365
ISBN: 978-972-778-328-1
Fuente: 21st Conference of the International Graphonomics Society (IGS2023), p. 116-120.
Colección:Actas de congresos
Adobe PDF (1,8 MB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.