Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/127184
Title: On the solvability of a cantilever-type boundary value problem by using the mixed monotone operator
Authors: Harjani Saúco, Jackie Jerónimo 
López Brito, María Belén 
Sadarangani Sadarangani, Kishin Bhagwands 
UNESCO Clasification: 330532 Ingeniería de estructuras
Keywords: Positive solution
Mixed monotone operator
Cantilever-type boundary value problem
Issue Date: 2023
Journal: Positivity 
Abstract: In the present paper, by using the mixed monotone operator method we prove the existence and uniqueness of positive solution to the following cantilever-type boundary value problem {u(4)(t)=f(t,u(t),u(αt))+g(t,u(t)),0<t<1,α∈(0,1),u(0)=u′(0)=u′′(1)=u′′′(1)=0. Moreover, in order to illustrate the results we present an example.
URI: http://hdl.handle.net/10553/127184
ISSN: 1385-1292
DOI: 10.1007/s11117-023-01007-2
Source: Positivity [ISSN 1385-1292], v. 27, artículo 54, agosto 2023
Appears in Collections:Artículos
Thumbnail
pdf
Adobe PDF (229,35 kB)
Show full item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.