Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/jspui/handle/10553/127184
Title: On the solvability of a cantilever-type boundary value problem by using the mixed monotone operator
Authors: Harjani Saúco, Jackie Jerónimo 
López Brito, María Belén 
Sadarangani Sadarangani, Kishin Bhagwands 
UNESCO Clasification: 330532 Ingeniería de estructuras
Keywords: Positive solution
Mixed monotone operator
Cantilever-type boundary value problem
Issue Date: 2023
Journal: Positivity 
Abstract: In the present paper, by using the mixed monotone operator method we prove the existence and uniqueness of positive solution to the following cantilever-type boundary value problem {u(4)(t)=f(t,u(t),u(αt))+g(t,u(t)),0<t<1,α∈(0,1),u(0)=u′(0)=u′′(1)=u′′′(1)=0. Moreover, in order to illustrate the results we present an example.
URI: https://accedacris.ulpgc.es/handle/10553/127184
ISSN: 1385-1292
DOI: 10.1007/s11117-023-01007-2
Source: Positivity [ISSN 1385-1292], v. 27, artículo 54, agosto 2023
Appears in Collections:Artículos
Thumbnail
pdf
Adobe PDF (229,35 kB)
Show full item record

Page view(s) 10

3
checked on Jan 10, 2026

Download(s)

1
checked on Jan 10, 2026

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.