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Abstract
In the present paper, by using the mixed monotone operator method we prove the
existence and uniqueness of positive solution to the following cantilever-type boundary
value problem

{
u(4)(t) = f (t, u(t), u(αt)) + g(t, u(t)), 0 < t < 1, α ∈ (0, 1),
u(0) = u′(0) = u′′(1) = u′′′(1) = 0.

Moreover, in order to illustrate the results we present an example.

Keywords Positive solution · Mixed monotone operator · Cantilever-type boundary
value problem

Mathematics Subject Classification 47H10 · 49L20

1 Introduction and preliminaries

The fourth order differential equations can be used to model the steady states of
deflections of elastic beams as, for example,

u(4)(t) = f (t, u(t)), 0 < t < 1, (1)
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under the boundary conditions

u(0) = u′(0) = u′′(1) = u′′′(1) = 0. (2)

The boundary value problem (1)–(2) describes a bar of length 1 which is clamped on
the left end and is free to move at the right end with vanishing bending moment and
shearing force (see, for example [1–3]).

The main tool used in the proof to the results of [1–3] are the measure chains [2],
the fixed point index theory in cones [2] and the monotonically iterative technique [3].

In this paper, we investigate the existence and uniqueness of positive solutions to
the following cantilever-type boundary value problem

{
u(4)(t) = f (t, u(t), u(αt)) + g(t, u(t)), 0 < t < 1, α ∈ (0, 1),
u(0) = u′(0) = u′′(1) = u′′′(1) = 0,

(3)

where f : [0, 1] × [0,∞) × [0,∞) → [0,∞) and g : [0, 1] × [0,∞) → [0,∞) are
continuous functions.

The main tool used in the proof of the results of the paper is the mixed monotone
operator method.

The technique of the mixed monotone operators was introduced by Guo and Lak-
shmikantham in [4] in order to obtain results about coupled fixed points and its
applications to the theory of existence of solutions of nonlinear operators. Since then, a
great number of papers using this technique has appeared in the literature (see [4–15]),
among others).

Next, we present some basic facts and results about the mixed monotone operator
method which will be the main tool used in the proof of the results of the paper.
Suppose that (E, ‖ · ‖) is a real Banach space.

A cone in E is a nonempty closed convex set K ⊂ E satisfying the following two
conditions:

(a) x ∈ K and λ > 0 ⇒ λx ∈ K .
(b) −x, x ∈ K ⇒ x = θE .

(Here θE denotes the zero element of the Banach space E).
Let K be a cone in the Banach space (E, ‖ · ‖) then K induces a partial order in E

defined by, for any x, y ∈ E ,

x ≤ y ⇐⇒ y − x ∈ K .

By x < y we denote x ≤ y and x �= y.
If K̊ denotes the interior of K and K̊ is nonempty then we say that the cone K is

solid.When there exists a constantC > 0 such that, for any x, y ∈ E with θE ≤ x ≤ y,
we have ‖x‖ ≤ C‖y‖, we say that the cone K is normal. In this case, the smallest
constant C satisfying the above mentioned inequality is called the normality constant
of K .
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In this context, for any x, y ∈ E , by x ∼ y we denote the existence of constants
λ,μ > 0 satisfying

λy ≤ x ≤ μy.

It is easily seen that ∼ is an equivalence relation.
Finally, for θE < h with h ∈ E , Kh denotes the following set

Kh = {x ∈ E : x ∼ h}.

It is clear that Kh ⊂ K .
Next, we need some definitions in order to present the mixed monotone operator

method used in our study. This material appears in [10].

Definition 1 An operator T : E → E is increasing (resp. decreasing) if, for any
x, y ∈ E with x ≤ y, then T x ≤ T y (resp. T x ≥ T y).

Definition 2 Anoperator A : K×K → K is said to bemixedmonotonewhen A(x, y)
is increasing in x and decreasing in y, that is, for any (x, y), (u, v) ∈ K × K ,

x ≤ u and y ≥ v ⇒ A(x, y) ≤ A(u, v).

Definition 3 Amapping B : K −→ K is called subhomogeneous if, for any t ∈ (0, 1)
and x ∈ K , the inequality

B(t x) ≥ t B(x)

holds.

Now, we are ready to present the mixed monotone operator method appearing in [10].

Theorem 1 Suppose that K is a normal cone in the Banach space (E, ‖·‖), γ ∈ (0, 1)
and h ∈ E with θE < h.

Let A : K × K −→ K be a mixed monotone operator satisfying

A(t x, t−1y) ≥ tγ A(x, y),

for any t ∈ (0, 1) and x, y ∈ K, and B : K −→ K an increasing subhomogeneous
operator.

Under the following assumptions:

(i) there exists h0 ∈ Kh such that A(h0, h0) ∈ Kh and Bh0 ∈ Kh,
(ii) there exists a constant δ0 > 0 satisfying

A(x, y) ≥ δ0Bx,

for any x, y ∈ K,
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we have that

(1) A : Kh × Kh −→ Kh and B : Kh −→ Kh,
(2) there exists u0, v0 ∈ Kh and r ∈ (0, 1) such that rv0 ≤ u0 ≤ v0 and

u0 ≤ A(u0, v0) + Bu0 ≤ A(v0, u0) + Bv0 ≤ v0,

(3) there exists a unique x∗ ∈ Kh such that

x∗ = A(x∗, x∗) + Bx∗,

(4) for any initial values x0, y0 ∈ Kh, the sequences defined by

xn = A(xn−1, yn−1) + Bxn−1,

yn = A(yn−1, xn−1) + Byn−1,

for n = 1, 2, . . . , satisfy

lim
n→∞ ‖xn − x∗‖ = lim

n→∞ ‖yn − x∗‖ = 0.

2 Main result

We start this section presenting the space and the cone where the solutions to our
Problem (3) live.

By E = C[0, 1] we denote the classical space of the continuous functions x :
[0, 1] −→ R equippedwith the supremumstandard normgiven by‖x‖ = max{|x(t)| :
t ∈ [0, 1]}.

In C[0, 1], we consider the cone K defined by

K = {x ∈ C[0, 1] : x(t) ≥ 0 for t ∈ [0, 1]}.

It is well known that K is a normal cone with normality constant C = 1. In this case,
the partial order in C[0, 1] induced by K is given by, for x, y ∈ C[0, 1],

x ≤ y ⇐⇒ x(t) ≤ y(t) for any t ∈ [0, 1].

Before to present our main result, we need some lemmas.
The following lemma appears in [2].

Lemma 1 Suppose that g ∈ C[0, 1]. Then the following boundary value problem

{
u(4)(t) = g(t), 0 < t < 1,
u(0) = u′(0) = u′′(1) = u′′′(1) = 0,
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has a unique solution

u(t) =
∫ 1

0
G(t, s)g(s)ds,

where

G(t, s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

6
(3t2s − t3), 0 ≤ t ≤ s ≤ 1,

1

6
(3s2t − s3), 0 ≤ s ≤ t ≤ 1.

Remark 1 It is clear thatG(t, s) is a continuous function on [0, 1]×[0, 1] andG(t, s) ≥
0 for t, s ∈ [0, 1].
The following lemma gives us upper and lower bounds of G(t, s).

Lemma 2 For any t, s ∈ [0, 1], we have that
1

3
t2s2 ≤ G(t, s) ≤ 1

2
t2. (4)

Proof In order to prove the lower bound, we consider the following two cases i) and
i i).

(i) Suppose that 0 ≤ s ≤ t ≤ 1.
In this case, we have

G(t, s) = 1

6
(3s2t − s3)

≥ 1

6
(3s2t − s2t) = 1

6
2s2t = 1

3
s2t ≥ 1

3
s2t2.

(i i) For 0 ≤ t ≤ s ≤ 1 we infer that

G(t, s) = 1

6
(3t2s − t3)

≥ 1

6
(3t2s − t2s) = 1

6
2t2s = 1

3
t2s ≥ 1

3
t2s2.

This proves the left inequality in (4).

For the upper bound, following a similar argument, we consider that 0 ≤ s ≤ t ≤ 1
and we have

G(t, s) = 1

6
(3s2t − s3)

≤ 1

6
3s2t = 1

2
s2t ≤ 1

2
t3 ≤ 1

2
t2.
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In the case 0 ≤ t ≤ s ≤ 1, it follows that

G(t, s) = 1

6
(3t2s − t3)

≤ 1

6
3t2s = 1

2
t2s ≤ 1

2
t2,

and this proves the right inequality in (4).
This completes the proof. ��

In the sequel, we present the main result of the paper.

Theorem 2 Suppose the following assumptions:

(i) f : [0, 1] × [0,∞) × [0,∞) → [0,∞) and g : [0, 1] × [0,∞) → [0,∞) are
continuous functions. Moreover, there exists t0 ∈ (0, 1] satisfying
g(t0, 0) > 0.

(ii) f (t, x, y) is increasing in x and decreasing in y and g(t, x) is increasing in x.
(iii) g(t, λx) ≥ λg(t, x) for any λ ∈ (0, 1), t ∈ [0, 1] and x ∈ [0,∞).
(iv) There exists a constant β ∈ (0, 1) satisfying

f (t, λx, λ−1y) ≥ λβ f (t, x, y),

for any λ ∈ (0, 1), t ∈ [0, 1] and x, y ∈ [0,∞).
(v) There exists a constant δ0 > 0 such that

f (t, x, y) ≥ δ0g(t, x),

for any t ∈ [0, 1] and x, y ∈ [0,∞).

Then we have the following facts.

(1) There exist u0, v0 ∈ Kh and r ∈ (0, 1) such that

rv0 ≤ u0 ≤ v0,

and, moreover,

u0(t) ≤
∫ 1

0
G(t, s) f (s, u0(s), v0(αs))ds +

∫ 1

0
G(t, s)g(s, u0(s))ds

and

v0(t) ≥
∫ 1

0
G(t, s) f (s, v0(s), u0(αs))ds +

∫ 1

0
G(t, s)g(s, v0(s))ds,

where h(t) = t2 for t ∈ [0, 1].
(2) Problem (3) has a unique positive solution x∗ ∈ Kh (here by positive solution x∗

we mean that x∗(t) > 0 for t ∈ (0, 1)).
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(3) For any x0, y0 ∈ Kh, the sequences inductively defined by

xn(t) =
∫ 1

0
G(t, s) f (s, xn−1(s), yn−1(αs))ds +

∫ 1

0
G(t, s)g(s, xn−1(s))ds

and

yn(t) =
∫ 1

0
G(t, s) f (s, yn−1(s), xn−1(αs))ds +

∫ 1

0
G(t, s)g(s, yn−1(s))ds

satisfy

lim
n→∞ ‖xn − x∗‖ = lim

n→∞ ‖yn − x∗‖ = 0.

Proof Taking into account Lemma 1, our question about the existence of solutions to
Problem (3) would be to find solutions to the following integral equation

x(t) =
∫ 1

0
G(t, s) f (s, x(s), x(αs))ds +

∫ 1

0
G(t, s)g(s, x(s))ds, (5)

for t ∈ [0, 1].
Next, we consider the two following operators

A(u, v)(t) =
∫ 1

0
G(t, s) f (s, u(s), v(αs))ds

and

(Bu)(t) =
∫ 1

0
G(t, s)g(s, u(s))ds,

for any t ∈ [0, 1] and u, v ∈ K .
By using assumption (i) and Remark 1 about the continuity and the nonnegative

character of G(t, s), it follows that A : K × K → K and B : K → K .
It is clear that x satisfies Eq. (5) if and only if x = A(x, x) + Bx .
In the sequel, we check that assumptions of Theorem 1 are satisfied.
Taking into account assumption (i i), we infer that A is a mixed monotone operator

and B is increasing.
Moreover, by assumption (iv), we have that, for any λ ∈ (0, 1) and x, y ∈ K ,

A(λx, λ−1y)(t) =
∫ 1

0
G(t, s) f (s, λx(s), λ−1y(αs))ds

≥ λβ

∫ 1

0
G(t, s) f (s, x(s), y(αs))ds

= λβ A(x, y)(t),
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where β ∈ (0, 1).
This proves that the operator A satisfies the condition appearing in Theorem 1 with

γ = β.
In order to prove that B is a subhomogeneous operator, we take λ ∈ (0, 1) and

x ∈ K .
By using assumption (i i i), we deduce that

B(λx)(t) =
∫ 1

0
G(t, s)g(s, λx(s))ds

≥ λ

∫ 1

0
G(t, s)g(s, x(s))ds

= λBx(t),

this is, B is a subhomogeneous operator.
Next, we take the function given by h(t) = t2 for t ∈ [0, 1]. Note that 0 ≤ h(t) ≤ 1

for t ∈ [0, 1]. It is clear that h ∈ P and θE < h. Moreover, Lemma 2 and assumption
(i i) gives us that, for any t ∈ [0, 1],

A(h, h)(t) =
∫ 1

0
G(t, s) f (s, h(s), h(αs))ds

≤ 1

2
t2

∫ 1

0
f (s, 1, 0)ds

= 1

2
h(t)

∫ 1

0
f (s, 1, 0)ds = h(t)

∫ 1

0

1

2
f (s, 1, 0)ds. (6)

On the other hand, by Lemma 2 and assumption (i i), it follows that

A(h, h)(t) =
∫ 1

0
G(t, s) f (s, h(s), h(αs))ds

≥ 1

3
t2

∫ 1

0
s2 f (s, 0, 1)ds

= 1

3
h(t)

∫ 1

0
s2 f (s, 0, 1)ds

= h(t)
∫ 1

0

1

3
s2 f (s, 0, 1)ds. (7)

If we put

α1 =
∫ 1

0

1

3
s2 f (s, 0, 1)ds
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and

α2 =
∫ 1

0

1

2
f (s, 1, 0)ds

then, from (6) and (7), we get

α1h ≤ A(h, h) ≤ α2h. (8)

Now, we need to prove that αi > 0 for i = 1, 2.
In order to do this, it is sufficient to prove that α1 > 0 (because α1 ≤ α2). In fact,

by assumption (i), we have that g(t0, 0) > 0 for certain t0 ∈ [0, 1]. By the continuity
of g (assumption (i)), from g(t0, 0) > 0 we find a subset E ⊂ [0, 1] with t0 ∈ E such
that μ(E) > 0, (where μ denotes the Lebesgue measure) and g(t, 0) > 0 for t ∈ E .

By using assumption (v), we deduce

f (s, 0, 1) ≥ δ0g(s, 0) ≥ 0,

and we get

α1 =
∫ 1

0

1

3
s2 f (s, 0, 1)ds

≥
∫ 1

0

1

3
s2δ0g(s, 0)ds

≥
∫
E

1

3
s2δ0g(s, 0)ds > 0,

where in the last inequality we have used the fact that

1

3
s2δ0g(s, 0) > 0 for s ∈ E − {0}.

Therefore, α1 and α2 are positive numbers and, consequently, by (8), A(h, h) ∈ Kh .
In the sequel, we prove that Bh ∈ Kh .
Taking into account Lemma 2 and our assumption (i i), it follows that, for any

t ∈ [0, 1], we have

(Bh)(t) =
∫ 1

0
G(t, s)g(s, h(s))ds

≤
∫ 1

0

1

2
t2g(s, h(s))ds

= t2
∫ 1

0

1

2
g(s, h(s))ds

≤ t2
∫ 1

0

1

2
g(s, 1)ds = h(t)

∫ 1

0

1

2
g(s, 1)ds.
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Similarly, by Lemma 2 and assumption (i i), we get

(Bh)(t) =
∫ 1

0
G(t, s)g(s, h(s))ds

≥
∫ 1

0

1

3
t2s2g(s, h(s))ds

≥ t2
∫ 1

0

1

3
s2g(s, 0)ds

= h(t)
∫ 1

0

1

3
s2g(s, 0)ds.

Putting

ρ1 =
∫ 1

0

1

3
s2g(s, 0)ds

and

ρ2 =
∫ 1

0

1

2
g(s, 1)ds,

we have that

ρ1h ≤ Bh ≤ ρ2h.

Next, we prove that Bh ∈ Kh . Using a similar argument to the one used above, we
need to prove that ρ1 > 0. In fact,

ρ1 =
∫ 1

0

1

3
s2g(s, 0)ds ≥

∫
E

1

3
s2g(s, 0)ds > 0.

Therefore, Bh ∈ Kh .
Finally, we need to prove that, for any u, v ∈ K , there exists ε > 0 such that

A(u, v) ≥ εBu.
In order to do this, we take u, v ∈ K and t ∈ [0, 1] and, by using our assumption

(v), it follows

A(u, v)(t) =
∫ 1

0
G(t, s) f (s, u(s), u(αs))ds

≥ δ0

∫ 1

0
G(t, s)g(s, u(s))ds = δ0(Bu)(t).

This says us that A(u, v) ≥ δ0Bu and, therefore, we can take ε = δ0.
This proves that assumptions of Theorem 1 are satisfied and, thus, we obtain our

result.
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Notice that the solution x∗ to our Problem (3) is positive since x∗ ∈ Kh and
0 < h(t) = t2 for t ∈ (0, 1).

This completes the proof. ��
Next, we present an example illustrating the result obtained.

Example 1 Consider the following nonlinear boundary value problem

⎧⎪⎨
⎪⎩
u(4)(t) = 3 + 2 3

√
u(t) + 1

3
√
u( 15 t) + 1

, t ∈ (0, 1)

u(0) = u′(0) = u′′(1) = u′′′(1) = 0.

(9)

Notice that Problem (9) is a particular case of Problem (3), where

f (t, u, v) = 2 + 3
√
u + 1

3
√

v + 1
,

g(t, u) = 1 + 3
√
u and α = 1

5
.

It is easily seen that f applies [0, 1] × [0,∞) × [0,∞) into [0,∞) and g applies
[0, 1] × [0,∞) into [0,∞).

Moreover, both functions f and g are clearly continuous functions, and, for
example, g( 13 , 0) = 1 > 0.

This says us that assumption (i) of Theorem 2 is satisfied. It is clear that f and g
satisfy assumption (i i) of Theorem 2. In order to check assumption (i i i) of Theorem 2,
we take t ∈ [0, 1], x ∈ [0,∞) and λ ∈ (0, 1) and it follows

g(t, λu) = 1 + 3
√

λu >
3
√

λ + 3
√

λ 3
√
u

= 3
√

λ(1 + 3
√
u)

> λ(1 + 3
√
u) = λg(t, u).

Assumption (iv) of Theorem 2 is satisfied because for t ∈ [0, 1], x, y ∈ [0,∞) and
λ ∈ (0, 1), we have

f (t, λu, λ−1v) = 2 + 3
√

λu + 1
3
√

λ−1v + 1

= 2 + 3
√

λ 3
√
u +

3
√

λ
3
√

v + λ

> 2 3
√

λ + 3
√

λ 3
√
u +

3
√

λ
3
√

v + λ

= 3
√

λ

(
2 + 3

√
u + 1

3
√

v + λ

)

>
3
√

λ

(
2 + 3

√
u + 1

3
√

v + 1

)
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= 3
√

λ f (t, u, v),

and this says us that assumption (iv) of Theorem 2 is satisfied with β = 1
3 .

Finally, for t ∈ [0, 1] and u, v ∈ [0,∞), we deduce

f (t, u, v) = 2 + 3
√
u + 1

3
√

v + 1
> 1 + 3

√
u = g(t, u)

and this proves that assumption (v) of Theorem 2 is satisfied with δ0 = 1.
Now, by Theorem 2, we infer that Problem (9) has a unique positive solution

u∗ ∈ C[0, 1] with u∗ ∈ Kh , where h(t) = t2 for t ∈ [0, 1].
Next, we compare our result with the one appearing in [2].
In [2], the author studied the following fourth order boundary value problem

{
u(4)(t) = f (t, u(t), u′(t), u′′(t), u′′′(t)), 0 < t < 1,
u(0) = u′(0) = u′′(1) = u′′′(1) = 0.

(10)

He proved the existence of positive solutions to Problem (10) under certain growths
of the nonlinearity f .

Particularly, if by f 0 and f∞ we denote the following quantities

f 0 = lim sup
x0, x1, x2 ≥ 0, x3 ≤ 0
|x0| + |x1| + |x2| + |x3| → 0

max
0≤t≤1

f (t, x0, x1, x2, x3)

|x0 + |x1| + x2| + |x3|

and

f∞ = lim inf
x0, x1, x2 ≥ 0, x3 ≤ 0
|x0| + |x1| + |x2| + |x3| → ∞

min
0≤t≤1

f (t, x0, x1, x2, x3)

|x0| + |x1| + |x2| + |x3|

then in Corollary 3.1 of [2] it is proved the following result.

Theorem 3 Let f : [0, 1] × [0,∞) × [0,∞) × [0,∞] × (−∞, 0] → [0,∞) be
continuous. Suppose the following assumptions

(a) For any M > 0 there exists a positive continuous function HM (ρ) defined on
[0,∞) satisfying

∫ +∞

0

ρdρ

HM (ρ) + 1
= +∞

such that

f (t, x0, x1, x2, x3) ≤ HM (max(|x2|, |x3|)),
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for any t ∈ [0, 1], x0, x1 ∈ [0, M], x2 ∈ [0,∞) and x3 ∈ (−∞, 0]. (Nagumo type
condition).

(b) f 0 < 1 and f∞ > 10′5.

Then Problem (10) has at least one positive solution.

Next, we present an example where condition (b) of Theorem 3 is not satisfied while
to this example we can apply Theorem 2.

Example 2 Consider the following nonlinear bouondary value problem

{
u(4)(t) = 3 + 3

√
u, t ∈ (0, 1),

u(0) = u′(0) = u′′(1) = u′′′(1) = 0.
(11)

Notice that Problem (11) is a particular case of Problem (3) with

f (t, u, v) = 2 + 3
√
u,

and

g(t, u) = 1.

It is clear that f applies [0, 1]×[0,∞)×[0,∞) into [0,∞), g applies [0, 1]×[0,∞)

into [0,∞), both functions f and g are continuous and, particularly, g( 12 , 0) = 1 > 0.
Moreover, f is increasing in u and decreasing in v and g is increasing in u.

On the other hand, for any λ ∈ (0, 1), t ∈ [0, 1] and u ∈ [0,∞),

g(t, λu) = 1 > λ = λg(t, u).

To check assumption (iv) of Theorem 2, we take t ∈ [0, 1], u, v ∈ [0,∞) and
λ ∈ (0, 1) and we deduce

f (t, λu, λ−1v) = 2 + 3
√

λu = 2 + 3
√

λ 3
√
u

> 2 3
√

λ + 3
√

λ 3
√
u

= 3
√

λ(2 + 3
√
u) = 3

√
λ f (t, u, v),

and this proves that assumption (iv) of Theorem 2 is satisfied with β = 1
3 .

Finally, for any t ∈ [0, 1] and u, v ∈ [0, 1], we have

f (t, u, v) = 2 + 3
√
u > 1 = g(t, u).

Therefore, since assumptions of Theorem 2 are satisfied, it follows that Problem (11)
has a unique positive solution u∗ ∈ C[0, 1] such that, for any t ∈ [0, 1],

c1t
2 ≤ u∗(t) ≤ c2t

2,

where c1 and c2 are positive constants.
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On the other hand,

f 0 = lim sup
u+v→0

max
0≤t≤1

f (t, u, v)

u + v

= lim sup
u+v→0

max
0≤t≤1

2 + 3
√
u

u + v

= lim sup
u+v→0

2 + 3
√
u

u + v
= ∞,

and

f∞ = lim inf
u+v→∞ min

0≤t≤1

f (t, u, v)

u + v

lim inf
u+v→∞ min

0≤t≤1

2 + 3
√
u

u + v

lim inf
u+v→∞

2 + 3
√
u

u + v
= 0.

Consequently, Problem (11) cannot be studied by Theorem 3 since assumption (b) of
this theorem is not satisfied
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