Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/124114
Campo DC Valoridioma
dc.contributor.authorMendonça, Fábioen_US
dc.contributor.authorMostafa, Sheikh Shanawazen_US
dc.contributor.authorMorgado-Dias, Fernandoen_US
dc.contributor.authorRavelo-García, Antonio G.en_US
dc.contributor.authorRosenzweig, Ivanaen_US
dc.date.accessioned2023-07-31T12:01:50Z-
dc.date.available2023-07-31T12:01:50Z-
dc.date.issued2023en_US
dc.identifier.issn2093-9868en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/124114-
dc.description.abstractThis study conducted a systematic review to determine the feasibility of automatic Cyclic Alternating Pattern (CAP) analysis. Specifically, this review followed the 2020 Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines to address the formulated research question: is automatic CAP analysis viable for clinical application? From the identified 1,280 articles, the review included 35 studies that proposed various methods for examining CAP, including the classification of A phase, their subtypes, or the CAP cycles. Three main trends were observed over time regarding A phase classification, starting with mathematical models or features classified with a tuned threshold, followed by using conventional machine learning models and, recently, deep learning models. Regarding the CAP cycle detection, it was observed that most studies employed a finite state machine to implement the CAP scoring rules, which depended on an initial A phase classifier, stressing the importance of developing suitable A phase detection models. The assessment of A-phase subtypes has proven challenging due to various approaches used in the state-of-the-art for their detection, ranging from multiclass models to creating a model for each subtype. The review provided a positive answer to the main research question, concluding that automatic CAP analysis can be reliably performed. The main recommended research agenda involves validating the proposed methodologies on larger datasets, including more subjects with sleep-related disorders, and providing the source code for independent confirmation.en_US
dc.languageengen_US
dc.relation.ispartofBiomedical Engineering Lettersen_US
dc.sourceBiomedical Engineering Letters [ISSN 2093-9868], v. 13 p. 273-291 (2023)en_US
dc.subject3314 Tecnología médicaen_US
dc.subject.otherA Phaseen_US
dc.subject.otherAutomatic Classificationen_US
dc.subject.otherCapen_US
dc.subject.otherEegen_US
dc.titleTowards automatic EEG cyclic alternating pattern analysis: a systematic reviewen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s13534-023-00303-wen_US
dc.identifier.scopus85165172447-
dc.contributor.orcid0000-0002-5107-3248-
dc.contributor.orcid0000-0002-7677-0971-
dc.contributor.orcid0000-0001-7334-3993-
dc.contributor.orcid0000-0002-8512-965X-
dc.contributor.orcid0000-0003-2152-9694-
dc.contributor.authorscopusid57195946416-
dc.contributor.authorscopusid55489640900-
dc.contributor.authorscopusid7102398975-
dc.contributor.authorscopusid9634135600-
dc.contributor.authorscopusid6602775623-
dc.identifier.eissn2093-985X-
dc.description.lastpage291en_US
dc.description.firstpage273en_US
dc.relation.volume13en_US
dc.investigacionCiencias de la Saluden_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.date.coverdateJulio 2023en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr0,646
dc.description.jcr4,6
dc.description.sjrqQ2
dc.description.jcrqQ2
dc.description.esciESCI
dc.description.miaricds10,5
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-8512-965X-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameRavelo García, Antonio Gabriel-
Colección:Artículos
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.