Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/124114
Título: Towards automatic EEG cyclic alternating pattern analysis: a systematic review
Autores/as: Mendonça, Fábio
Mostafa, Sheikh Shanawaz
Morgado-Dias, Fernando
Ravelo-García, Antonio G. 
Rosenzweig, Ivana
Clasificación UNESCO: 3314 Tecnología médica
Palabras clave: A Phase
Automatic Classification
Cap
Eeg
Fecha de publicación: 2023
Publicación seriada: Biomedical Engineering Letters 
Resumen: This study conducted a systematic review to determine the feasibility of automatic Cyclic Alternating Pattern (CAP) analysis. Specifically, this review followed the 2020 Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines to address the formulated research question: is automatic CAP analysis viable for clinical application? From the identified 1,280 articles, the review included 35 studies that proposed various methods for examining CAP, including the classification of A phase, their subtypes, or the CAP cycles. Three main trends were observed over time regarding A phase classification, starting with mathematical models or features classified with a tuned threshold, followed by using conventional machine learning models and, recently, deep learning models. Regarding the CAP cycle detection, it was observed that most studies employed a finite state machine to implement the CAP scoring rules, which depended on an initial A phase classifier, stressing the importance of developing suitable A phase detection models. The assessment of A-phase subtypes has proven challenging due to various approaches used in the state-of-the-art for their detection, ranging from multiclass models to creating a model for each subtype. The review provided a positive answer to the main research question, concluding that automatic CAP analysis can be reliably performed. The main recommended research agenda involves validating the proposed methodologies on larger datasets, including more subjects with sleep-related disorders, and providing the source code for independent confirmation.
URI: http://hdl.handle.net/10553/124114
ISSN: 2093-9868
DOI: 10.1007/s13534-023-00303-w
Fuente: Biomedical Engineering Letters [ISSN 2093-9868], v. 13 p. 273-291 (2023)
Colección:Artículos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.