Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/124114
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Mendonça, Fábio | en_US |
dc.contributor.author | Mostafa, Sheikh Shanawaz | en_US |
dc.contributor.author | Morgado-Dias, Fernando | en_US |
dc.contributor.author | Ravelo-García, Antonio G. | en_US |
dc.contributor.author | Rosenzweig, Ivana | en_US |
dc.date.accessioned | 2023-07-31T12:01:50Z | - |
dc.date.available | 2023-07-31T12:01:50Z | - |
dc.date.issued | 2023 | en_US |
dc.identifier.issn | 2093-9868 | en_US |
dc.identifier.other | Scopus | - |
dc.identifier.uri | http://hdl.handle.net/10553/124114 | - |
dc.description.abstract | This study conducted a systematic review to determine the feasibility of automatic Cyclic Alternating Pattern (CAP) analysis. Specifically, this review followed the 2020 Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines to address the formulated research question: is automatic CAP analysis viable for clinical application? From the identified 1,280 articles, the review included 35 studies that proposed various methods for examining CAP, including the classification of A phase, their subtypes, or the CAP cycles. Three main trends were observed over time regarding A phase classification, starting with mathematical models or features classified with a tuned threshold, followed by using conventional machine learning models and, recently, deep learning models. Regarding the CAP cycle detection, it was observed that most studies employed a finite state machine to implement the CAP scoring rules, which depended on an initial A phase classifier, stressing the importance of developing suitable A phase detection models. The assessment of A-phase subtypes has proven challenging due to various approaches used in the state-of-the-art for their detection, ranging from multiclass models to creating a model for each subtype. The review provided a positive answer to the main research question, concluding that automatic CAP analysis can be reliably performed. The main recommended research agenda involves validating the proposed methodologies on larger datasets, including more subjects with sleep-related disorders, and providing the source code for independent confirmation. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | Biomedical Engineering Letters | en_US |
dc.source | Biomedical Engineering Letters [ISSN 2093-9868], v. 13 p. 273-291 (2023) | en_US |
dc.subject | 3314 Tecnología médica | en_US |
dc.subject.other | A Phase | en_US |
dc.subject.other | Automatic Classification | en_US |
dc.subject.other | Cap | en_US |
dc.subject.other | Eeg | en_US |
dc.title | Towards automatic EEG cyclic alternating pattern analysis: a systematic review | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/s13534-023-00303-w | en_US |
dc.identifier.scopus | 85165172447 | - |
dc.contributor.orcid | 0000-0002-5107-3248 | - |
dc.contributor.orcid | 0000-0002-7677-0971 | - |
dc.contributor.orcid | 0000-0001-7334-3993 | - |
dc.contributor.orcid | 0000-0002-8512-965X | - |
dc.contributor.orcid | 0000-0003-2152-9694 | - |
dc.contributor.authorscopusid | 57195946416 | - |
dc.contributor.authorscopusid | 55489640900 | - |
dc.contributor.authorscopusid | 7102398975 | - |
dc.contributor.authorscopusid | 9634135600 | - |
dc.contributor.authorscopusid | 6602775623 | - |
dc.identifier.eissn | 2093-985X | - |
dc.description.lastpage | 291 | en_US |
dc.description.firstpage | 273 | en_US |
dc.relation.volume | 13 | en_US |
dc.investigacion | Ciencias de la Salud | en_US |
dc.type2 | Artículo | en_US |
dc.utils.revision | Sí | en_US |
dc.date.coverdate | Julio 2023 | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-TEL | en_US |
dc.description.sjr | 0,646 | |
dc.description.jcr | 4,6 | |
dc.description.sjrq | Q2 | |
dc.description.jcrq | Q2 | |
dc.description.esci | ESCI | |
dc.description.miaricds | 10,5 | |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.orcid | 0000-0002-8512-965X | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.fullName | Ravelo García, Antonio Gabriel | - |
Appears in Collections: | Artículos |
SCOPUSTM
Citations
3
checked on Nov 17, 2024
WEB OF SCIENCETM
Citations
2
checked on Nov 17, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.