Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/123350
DC FieldValueLanguage
dc.contributor.authorAjali, Nabil I.en_US
dc.contributor.authorTravieso-González, Carlos M.en_US
dc.date.accessioned2023-06-08T13:03:35Z-
dc.date.available2023-06-08T13:03:35Z-
dc.date.issued2023en_US
dc.identifier.isbn9783031135774en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/123350-
dc.description.abstractIn order to improve lifestyle of people with motor disabilities, Brain Computer Interfaces are a potential solution. BCIs seek to achieve control of a machine through the use of brain waves. In this work, a brief historical review of the state of the art in the field of BCIs is made in this work. How brain signal processing is carried out to finally obtain a BCI tool is shown. The feature extractions and the main machine learning classification methods for classifications are seen. Finally, a classification of a public EEG dataset (Physionet) is carried out to and compared with other systems as an example. Thus, showing the general aspects of the development of a BCI systems, which will be part of technologies in society 5.0.en_US
dc.languageengen_US
dc.relation.ispartofSustainable Computing: Transforming Industry 4.0 To Society 5.0
dc.sourceSustainable Computing: Transforming Industry 4.0 to Society 5.0, p. 31-47, (Enero 2023)en_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherBrain Computer Interfaceen_US
dc.subject.otherBrain Signalsen_US
dc.subject.otherIndustry 4.0en_US
dc.subject.otherMachine Learningen_US
dc.subject.otherSociety 5.0en_US
dc.titleAnalysis of Brain Signals to Forecast Motor Intentions Using Artificial Intelligenceen_US
dc.typeinfo:eu-repo/semantics/bookParten_US
dc.typeBookParten_US
dc.identifier.doi10.1007/978-3-031-13577-4_2en_US
dc.identifier.scopus85160132207-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid58287704900-
dc.contributor.authorscopusid6602376272-
dc.description.lastpage47en_US
dc.description.firstpage31en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Capítulo de libroen_US
local.message.claim2024-01-18T12:11:16.623+0000|||rp03348|||submit_approve|||dc_contributor_author|||None*
dc.utils.revisionen_US
dc.date.coverdateEnero 2023en_US
dc.identifier.ulpgcen_US
dc.identifier.ulpgcen_US
dc.identifier.ulpgcen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.contributor.buulpgcBU-TELen_US
dc.contributor.buulpgcBU-TELen_US
dc.contributor.buulpgcBU-TELen_US
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-3939-5316-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameAjali Hernández, Nabil Isaac-
crisitem.author.fullNameTravieso González, Carlos Manuel-
Appears in Collections:Capítulo de libro
Show simple item record

Page view(s)

100
checked on Dec 7, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.