Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/123350
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Ajali, Nabil I. | en_US |
dc.contributor.author | Travieso-González, Carlos M. | en_US |
dc.date.accessioned | 2023-06-08T13:03:35Z | - |
dc.date.available | 2023-06-08T13:03:35Z | - |
dc.date.issued | 2023 | en_US |
dc.identifier.isbn | 9783031135774 | en_US |
dc.identifier.other | Scopus | - |
dc.identifier.uri | http://hdl.handle.net/10553/123350 | - |
dc.description.abstract | In order to improve lifestyle of people with motor disabilities, Brain Computer Interfaces are a potential solution. BCIs seek to achieve control of a machine through the use of brain waves. In this work, a brief historical review of the state of the art in the field of BCIs is made in this work. How brain signal processing is carried out to finally obtain a BCI tool is shown. The feature extractions and the main machine learning classification methods for classifications are seen. Finally, a classification of a public EEG dataset (Physionet) is carried out to and compared with other systems as an example. Thus, showing the general aspects of the development of a BCI systems, which will be part of technologies in society 5.0. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | Sustainable Computing: Transforming Industry 4.0 To Society 5.0 | |
dc.source | Sustainable Computing: Transforming Industry 4.0 to Society 5.0, p. 31-47, (Enero 2023) | en_US |
dc.subject | 3307 Tecnología electrónica | en_US |
dc.subject.other | Brain Computer Interface | en_US |
dc.subject.other | Brain Signals | en_US |
dc.subject.other | Industry 4.0 | en_US |
dc.subject.other | Machine Learning | en_US |
dc.subject.other | Society 5.0 | en_US |
dc.title | Analysis of Brain Signals to Forecast Motor Intentions Using Artificial Intelligence | en_US |
dc.type | info:eu-repo/semantics/bookPart | en_US |
dc.type | BookPart | en_US |
dc.identifier.doi | 10.1007/978-3-031-13577-4_2 | en_US |
dc.identifier.scopus | 85160132207 | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.authorscopusid | 58287704900 | - |
dc.contributor.authorscopusid | 6602376272 | - |
dc.description.lastpage | 47 | en_US |
dc.description.firstpage | 31 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Capítulo de libro | en_US |
local.message.claim | 2024-01-18T12:11:16.623+0000|||rp03348|||submit_approve|||dc_contributor_author|||None | * |
dc.utils.revision | Sí | en_US |
dc.date.coverdate | Enero 2023 | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-TEL | en_US |
dc.contributor.buulpgc | BU-TEL | en_US |
dc.contributor.buulpgc | BU-TEL | en_US |
dc.contributor.buulpgc | BU-TEL | en_US |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.orcid | 0000-0002-3939-5316 | - |
crisitem.author.orcid | 0000-0002-4621-2768 | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.fullName | Ajali Hernández, Nabil Isaac | - |
crisitem.author.fullName | Travieso González, Carlos Manuel | - |
Colección: | Capítulo de libro |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.