Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/123350
Campo DC Valoridioma
dc.contributor.authorAjali, Nabil I.en_US
dc.contributor.authorTravieso-González, Carlos M.en_US
dc.date.accessioned2023-06-08T13:03:35Z-
dc.date.available2023-06-08T13:03:35Z-
dc.date.issued2023en_US
dc.identifier.isbn9783031135774en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/123350-
dc.description.abstractIn order to improve lifestyle of people with motor disabilities, Brain Computer Interfaces are a potential solution. BCIs seek to achieve control of a machine through the use of brain waves. In this work, a brief historical review of the state of the art in the field of BCIs is made in this work. How brain signal processing is carried out to finally obtain a BCI tool is shown. The feature extractions and the main machine learning classification methods for classifications are seen. Finally, a classification of a public EEG dataset (Physionet) is carried out to and compared with other systems as an example. Thus, showing the general aspects of the development of a BCI systems, which will be part of technologies in society 5.0.en_US
dc.languageengen_US
dc.relation.ispartofSustainable Computing: Transforming Industry 4.0 To Society 5.0
dc.sourceSustainable Computing: Transforming Industry 4.0 to Society 5.0, p. 31-47, (Enero 2023)en_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherBrain Computer Interfaceen_US
dc.subject.otherBrain Signalsen_US
dc.subject.otherIndustry 4.0en_US
dc.subject.otherMachine Learningen_US
dc.subject.otherSociety 5.0en_US
dc.titleAnalysis of Brain Signals to Forecast Motor Intentions Using Artificial Intelligenceen_US
dc.typeinfo:eu-repo/semantics/bookParten_US
dc.typeBookParten_US
dc.identifier.doi10.1007/978-3-031-13577-4_2en_US
dc.identifier.scopus85160132207-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid58287704900-
dc.contributor.authorscopusid6602376272-
dc.description.lastpage47en_US
dc.description.firstpage31en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Capítulo de libroen_US
local.message.claim2024-01-18T12:11:16.623+0000|||rp03348|||submit_approve|||dc_contributor_author|||None*
dc.utils.revisionen_US
dc.date.coverdateEnero 2023en_US
dc.identifier.ulpgcen_US
dc.identifier.ulpgcen_US
dc.identifier.ulpgcen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.contributor.buulpgcBU-TELen_US
dc.contributor.buulpgcBU-TELen_US
dc.contributor.buulpgcBU-TELen_US
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-3939-5316-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameAjali Hernández, Nabil Isaac-
crisitem.author.fullNameTravieso González, Carlos Manuel-
Colección:Capítulo de libro
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.