Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/123350
Título: | Analysis of Brain Signals to Forecast Motor Intentions Using Artificial Intelligence | Autores/as: | Ajali, Nabil I. Travieso-González, Carlos M. |
Clasificación UNESCO: | 3307 Tecnología electrónica | Palabras clave: | Brain Computer Interface Brain Signals Industry 4.0 Machine Learning Society 5.0 |
Fecha de publicación: | 2023 | Publicación seriada: | Sustainable Computing: Transforming Industry 4.0 To Society 5.0 | Resumen: | In order to improve lifestyle of people with motor disabilities, Brain Computer Interfaces are a potential solution. BCIs seek to achieve control of a machine through the use of brain waves. In this work, a brief historical review of the state of the art in the field of BCIs is made in this work. How brain signal processing is carried out to finally obtain a BCI tool is shown. The feature extractions and the main machine learning classification methods for classifications are seen. Finally, a classification of a public EEG dataset (Physionet) is carried out to and compared with other systems as an example. Thus, showing the general aspects of the development of a BCI systems, which will be part of technologies in society 5.0. | URI: | http://hdl.handle.net/10553/123350 | ISBN: | 9783031135774 | DOI: | 10.1007/978-3-031-13577-4_2 | Fuente: | Sustainable Computing: Transforming Industry 4.0 to Society 5.0, p. 31-47, (Enero 2023) |
Colección: | Capítulo de libro |
Visitas
100
actualizado el 07-dic-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.