Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/120767
Título: Extending the kinematic theory of rapid movements with new primitives
Autores/as: Ferrer Ballester, Miguel Ángel 
Díaz Cabrera, Moisés 
Quintana Hernández, José Juan 
Carmona Duarte, María Cristina 
Plamondon, Réjean
Clasificación UNESCO: 3313 Tecnología e ingeniería mecánicas
Palabras clave: Kinematic theory of rapid movements
Spatiotemporal sequences
Sigma-Lognormal model
Human motor control model
Biometrics, et al.
Fecha de publicación: 2023
Proyectos: Modelado cinemático 3D para la caracterización del movimiento humano, animal y robótico 
Publicación seriada: Pattern Recognition Letters 
Resumen: The Kinematic Theory of rapid movements, and its associated Sigma-Lognormal, model 2D spatiotemporal trajectories. It is constructed mainly as a temporal overlap of curves between virtual target points. Specifically, it uses an arc and a lognormal as primitives for the representation of the trajectory and velocity, respectively. This paper proposes developing this model, in what we call the Kinematic Theory Transform, which establishes a mathematical framework that allows further primitives to be used. Mainly, we evaluate Euler curves to link virtual target points and Gaussian, Beta, Gamma, Double-bounded lognormal, and Generalized Extreme Value functions to model the bell-shaped velocity profile. Using these primitives, we report reconstruction results with spatiotemporal trajectories executed by human beings, animals, and anthropomorphic robots.
URI: http://hdl.handle.net/10553/120767
ISSN: 0167-8655
DOI: 10.1016/j.patrec.2023.02.021
Fuente: Pattern Recognition Letters [ISSN 0167-8655], v. 167, p. 181-188, (Marzo 2023)
Colección:Artículos
Adobe PDF (2,37 MB)
Vista completa

Citas SCOPUSTM   

1
actualizado el 22-dic-2024

Citas de WEB OF SCIENCETM
Citations

1
actualizado el 22-dic-2024

Visitas

183
actualizado el 01-nov-2024

Descargas

97
actualizado el 01-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.