
Pattern Recognition Letters 167 (2023) 181–188 

Contents lists available at ScienceDirect 

Pattern Recognition Letters 

journal homepage: www.elsevier.com/locate/patrec 

Extending the kinematic theory of rapid movements with new 

primitives 

Miguel A. Ferrer a , Moises Diaz 

a , ∗, Jose Juan Quintana 

a , Cristina Carmona-Duarte 

a , 
Réjean Plamondon 

b 

a Instituto Universitario para el Desarrollo Tecnológico y la Innovación en Comunicaciones, Universidad de Las Palmas de Gran Canaria, Spain 
b Polytechnique Montréal, Montréal, P.Q., Canada 

a r t i c l e i n f o 

Article history: 

Received 29 August 2022 

Revised 18 January 2023 

Accepted 15 February 2023 

Available online 20 February 2023 

Edited by Maria De Marsico 

Keywords: 

Kinematic theory of rapid movements 

Spatiotemporal sequences 

Sigma-Lognormal model 

Human motor control model 

Biometrics 

Handwritten signature analysis 

Handwriting analysis 

Animals’ movement modelling 

Motion analysis 

a b s t r a c t 

The Kinematic Theory of rapid movements, and its associated Sigma-Lognormal, model 2D spatiotempo- 

ral trajectories. It is constructed mainly as a temporal overlap of curves between virtual target points. 

Specifically, it uses an arc and a lognormal as primitives for the representation of the trajectory and 

velocity, respectively. This paper proposes developing this model, in what we call the Kinematic Theory 

Transform, which establishes a mathematical framework that allows further primitives to be used. Mainly, 

we evaluate Euler curves to link virtual target points and Gaussian, Beta, Gamma, Double-bounded log- 

normal, and Generalized Extreme Value functions to model the bell-shaped velocity profile. Using these 

primitives, we report reconstruction results with spatiotemporal trajectories executed by human beings, 

animals, and anthropomorphic robots. 

© 2023 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 
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. Introduction 

There exist many theories that have tried to describe the veloc- 

ty profile of the movements of human beings in general and hand- 

riting in particular [1] . Specifically, [2] mentions models relying 

n neural networks, equilibrium point models, behavioral models, 

oupled oscillator models, differential equation models, kinematic 

odels, and models exploiting minimization principles such as the 

inimization of the acceleration, or the energy, or the time, or 

he jerk, or the snap, or the torque changes or the sensory-motor 

oise. Many models exploit the properties of various mathematical 

unctions to reproduce human movements: exponentials, second- 

rder systems, Gaussians, beta functions, splines and trigonometri- 

al functions. 

Among the models which provide analytical representations, 

he kinematic theory of rapid human movements [3] and its asso- 
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iated Sigma-Lognormal model have been extensively used to ex- 

lain most of the basic phenomena reported in classical studies on 

uman motor control and to study several factors involved in fine 

otricity [4–6] . 

To work out the Sigma-Lognormal parameters, a spatiotemporal 

rajectory is transformed as a sequence of circumference arcs be- 

ween virtual target points. A starting and an ending angle define 

ach arc between virtual target points. Each ending virtual target 

oint is the starting virtual target point of the next arc. Further- 

ore, each arc has a starting and ending time, but the finishing 

ime of an arc is not the same as the starting time of the next arc.

s a consequence, the arcs are temporally overlapped. Each arc is 

xecuted following a lognormal-shaped velocity curve and all the 

amples corresponding to a given time are vectorially summed to 

econstruct the trajectory. 

As a result, the spatiotemporal trajectory can be analytically en- 

oded into a sequence of virtual target points along with their 

tarting and ending angles and their velocity parameters. As ve- 

ocity and trajectory primitives, this process has traditionally used 

ognormal functions and arcs of circumference between virtual tar- 

et points, respectively. From a purely mathematical point of view, 

uch primitives can be changed, that is to say, the lognormal func- 
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Fig. 1. Example of a spatiotemporal sequence with an inflection point between sp 0 
and sp 1 and just one stroke reconstructed with arcs. 
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ions or the arcs can be substituted by other bell-shaped functions 

r other curves respectively. Insofar as a spatiotemporal trajectory 

s represented as a linear combination of weighted and shifted 

urves and bell-shaped functions, we propose as a further devel- 

pment a mathematical transform which also follows the paradigm 

f the Kinematic Theory of rapid movements. 

Hence, this paper defines what we call the Kinematic Theory 

ransform (KTT) for spatiotemporal trajectories with a bell-shaped 

elocity profile, which is often found in biological applications. 

ore specifically, a mathematical framework is proposed to calcu- 

ate their parameters and study the reach and range of KTT by pro- 

essing signals produced by human, animal and even robot arms. 

With this purpose in mind, the Sigma-Lognormal model is com- 

letely reformulated to incorporate these extensions. In this way, 

uler curves are added to improve the trajectory between virtual 

arget points and additional bell-shaped functions are included 

o enhance the fitting of the bell-shaped velocity profile such as 

aussian, Beta, Gamma, Double-bounded lognormals and General- 

zed Extreme Value functions. 

The paper is organized as follows: Section 2 establishes the 

athematical framework to modify the arc between virtual tar- 

et points by other analytical trajectories, while Section 3 intro- 

uces several bell-shaped functions that can be used instead of 

ognormals. The evaluation and related discussions are described 

n Section 4 , while Section 5 concludes the article. 

. Kinematic theory transform 

The Kinematic Theory Transform 

1 (KTT) is proposed as a 

seful tool for analyzing a wide range of spatiotemporal se- 

uences, thus extending and extrapolating the applications of the 

igma-Lognormal model. The KTT is integrated into the iDeLog 

ethod [7] . This section presents the mathematical framework 

hich enables the inclusion and use of new primitives in the KTT. 

.1. Generalizing the trajectory between virtual target points 

The arcs of circumference that link virtual points exhibit sev- 

ral limitations in the reconstruction of complex spatiotemporal 

rajectories. Several cases cannot be accurately reproduced by link- 

ng virtual target points with an arc of a circumference, for in- 

tance strokes that include inflexion points. This case is illustrated 

n Fig. 1 , in which the trajectory between sp 0 and sp 1 includes 

n inflexion point which happens to correspond to the maximum 

f the stroke in the bell-shaped velocity curve. The similarity be- 

ween such a trajectory and an arc is poor, as can be seen in Fig. 1 .

The solution proposed by the KTT is to allow different ballistic 

rajectories between target points that include inflexion points, but 

ithout changing the stroke parameters which are the virtual tar- 

et points t p j−1 and t p j and the tangent angles θs j and θe j . In this 

ay we keep the biological meaning of the KTT. 

To include a generalized trajectory in the KTT, let us define the 

rajectory by a general parametric curve: 

 p = f j (u ) 
 p = g j (u ) 

(1) 

o that t p j−1 = [ f j (u j1 ) , g j (u j1 )] , t p j = [ f j (u j2 ) , g j (u j2 )] , its deriva-

ive in u = u j1 is tan (θs j ) and its derivate in u = u j2 , tan (θe j ) . The

ength of the curve between the virtual targets points can be ob- 

ained as follows: 

 j = 

∫ u 2 j 

u 1 j 

√ (
∂ f j (u ) 

∂u 

)2 

+ 

(
∂g j (u ) 

∂u 

)2 

du (2) 
1 For a more detailed introduction to this section, we refer readers to the brief 

eview the Sigma-Lognormal model and iDeLog method, provided in the Supple- 

ental file. 
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Then, the trajectory can be reconstructed as: 

  r (t) = 

N ∑ 

j=1 

[
f j (u j (t)) ; g j (u j (t)) 

]
(3) 

here u j (t) is the value that solves the equation: 

 u j (t) 

u 1 j 

√ (
∂ f j (u ) 

∂u 

)2 

+ 

(
∂g j (u ) 

∂u 

)2 

du = 

D j 

∫ t 

0 

v j (t; t 0 j , p 1 j , . . . , p l j ) dt (4) 

nd where v j (t; t 0 j , p 1 j , . . . , p l j ) is the bell-shaped velocity func-

ion of stroke j, t the time, t 0 j the time of stroke occurrence, p l j 

he parameter l of the velocity function and D j the amplitude of 

he stroke. 

The solution to this equation holds for u j1 ≤ u j (t) ≤ u j2 . In this

ase, instead of using the Sigma-Lognormal model equations to re- 

onstruct a trajectory (see Supplemental file), the iDeLog method 

ses Eqs. (2) , (3) and (4) . Figure 2 illustrates the underlying idea

f this procedure. 

The introduction of new trajectories between virtual target 

oints which differ from arcs, implies a modification in the method 

hat works out θs j and θe j . Now, these two values are defined as 

ollows: 

1. The angle θs j is obtained as the angle at sp j−1 of the circum- 

erence that traverses the points sp j−1 , mp j1 and mp j , mp j1 . Where

p j denotes the midpoints of the circular arcs, which are identi- 

ed in the middle of the trajectory between sp j−1 and mp j . 

2. The angle θe j is obtained as the angle at sp j of the circumfer- 

nce that traverses the points mp j , mp j2 and sp j , mp j2 , being the 

oint in the middle of the trajectory between mp j and sp j . 

This new procedure offers the possibility of linking the virtual 

arget points with any curve, when it is defined by its parametric 

quations. Obviously, its use can be also extended to arcs of cir- 

umferences. In the next section we particularize this general pro- 

edure for clothoid curves because they can be defined by virtual 

oints and tangent angles and can include inflexion points. 

.2. Clothoids as curves that link virtual target points 

Clothoids are an example of curves that can link virtual target 

oints in the KTT. They represent a useful option because of the 

arameters required for their definition: their starting and end- 

ng points, as well as their starting and ending angles, fit perfectly 

ith the KTT. 
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Fig. 2. Procedure to sample the generalized link between virtual target points of a primitive. Example particularized for the case of Clothoid and Lognormal. 

Fig. 3. Same example as Fig. 1 but reconstructing the trajectory with clothoids. 
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A clothoid is a curve whose shape changes linearly with its 

urve length; however, the shape of a circular arc is equal to the 

eciprocal of the radius. Thus, the transition from θs j and θe j can 

e smoother than in the case of a circumference and may include 

n inflection point. 

In addition to its use for modelling handwriting graffiti [8] , this 

ind of curve optimizes the acceleration and jerk of ballistic tra- 

ectories, which are a characteristic of biological trajectories [9] . 

lothoids are also commonly referred to as Spiros, Euler spirals, 

r Cornu spirals. 

Clothoids are defined by the following system of ordinary dif- 

erential equations [10] for each primitive: 

 p = 

∫ u 

0 

cos (πv 2 / 2) dv ; y p = 

∫ u 

0 

sin (πv 2 / 2) dv (5) 

The process of obtaining a clothoid, given two consecutive vir- 

ual target points t p j−1 and t p j and the corresponding two angles 

s j and θe j , can be conducted using a software package. 2 

As an example, Fig. 3 illustrates a better reconstruction of the 

rajectory when clothoids are used when compared to Fig. 1 , where 

nly arcs of circumferences were used. The reconstruction of the 

elocity profile is not as good as with circle arcs though. 

. Generalization of the velocity bell shaped curve 

The musculoskeletal system is responsible for the movement 

f mammals, which is produced by the contraction of the skele- 

al muscles as a response to an action potential or electrical im- 
2 https://es.mathworks.com/matlabcentral/fileexchange/ 

2113- ebertolazzi- g1fitting . Accessed 23 Aug. 2022. 
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ulses from the nervous system. A skeletal muscle refers to multi- 

le bundles of cells joined together called muscle fibers. The coor- 

inated action of each muscle fiber produces the necessary strain 

o shorten the muscle and produce movement with a bell-shaped 

elocity profile. 

In motor control theory, various computational models have 

een developed to describe these velocity profiles [11] . Although it 

as been demonstrated that the Kinematic Theory and its Sigma- 

ognormal model could be seen as the ultimate minimization 

odel for human movement, several other analytical models might 

e of interest in some biological applications and in various fields. 

ost of these alternative models, by following the biological pro- 

edure of action potentials which excite muscular fibers, consider 

he muscular fiber as a subsystem of the skeleton muscle, which 

s considered as a system in itself. Thus, the movement is modeled 

s the impulse response to a set of L combined subsystems to the 

equence of motoneuron commands [12] . If these subsystems are 

onsidered as independent, a symmetric bell-shaped velocity pro- 

le emerges. If the synergetic coupling of numerous neuromuscu- 

ar subsystems is taken into account, then asymmetric lognormal 

rofiles emerge [13] . 

Given the number of different proposed shapes for the velocity 

rofile [11] and the similarity among them, we have implemented 

nd tested the following bell-shaped functions. 

.1. Gaussian function 

Whether all the subsystems are considered independent and 

he number of subsystem tends toward the infinite, based on the 

entral Limit Theorem, the bell-shaped velocity profile of a move- 

ent can be approximated by a symmetric Gaussian function de- 

ned as: 

 j (t;μ j , σ
2 
j ) = 

D j 

σ j 

√ 

2 π
exp 

{
−(t − μ j ) 

2 

2 σ 2 
j 

}
(6) 

here D j denoted the area under the velocity bell curve, μ j the 

ean and σ 2 
j 

the variance. It could be expected that the mean of 

he Gaussian function would be around the peak of the velocity 

ell. This function is supported in (−∞ , + ∞ ) and it is symmetric. 

.2. Gamma function 

Although the Gaussian function is a good approximation of the 

ell-shaped velocity peaks for biological movements, it is well- 

nown that the velocity peaks are asymmetric: they start at the 

ime t 0 j and there are not infinite subsystems. As such, the min- 

mum time theory model represents the velocity response of the 

euromuscular system by the convolution product of a large num- 

er of first-order low-pass filters. In this case, the response tends 

o a special case of the Gamma function [13] which is asymmetric. 

https://es.mathworks.com/matlabcentral/fileexchange/42113-ebertolazzi-g1fitting
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pecifically, the Gamma function used here to fit the velocity bell 

s defined by: 

 j (t; t 0 j , α, β) = D j 

(t − t 0 j ) 
α−1 exp {−(t − t 0 j ) /β} 

βα
∫ ∞ 

0 t α−1 exp (−t) dt 
(7) 

here α and β are called the shape and scale parameter, respec- 

ively. This function is defined for t 0 j < t < ∞ and α, β > 0 . From

he computational point of view, it adds a new parameter or de- 

ree of freedom for fitting the velocity bell curve. 

.3. Beta function 

The minimum jerk theory generalizes the expression for the ve- 

ocity bell curve as a smooth Beta model, which is itself a particu- 

ar case of the Gamma function [13] . In this case, the velocity bell

hape is double bounded, i.e. it starts at t 0 j and ends at t e j . The

eta function is defined by: 

 j (t; t 0 j , α, β) = D j 

(t − t 0 j ) 
α−1 (1 − (t − t 0 j )) 

β−1 ∫ 1 
0 u 

α−1 (1 − u ) β−1 du 

(8) 

here α and β are the first and second shape parameters. This 

unction is defined for t 0 j < t < t 0 j + 1 , and α, β > 0 . Because of

he inherent finite time length of the beta velocity bell shape 

urve, t min j − t 0 j < 1 , is required to hold, which is not a practical

olution if t min j−1 − t 0 j ≈ 0 . 5 [7] . 

.4. Lognormal function 

In the real world, neuromuscular subsystems are physically con- 

ected and system dependency cannot be neglected. The Central 

imit Theorem can be used to show that the velocity shape tends 

o a lognormal impulse response when the number of subsys- 

ems tends towards the infinite. The lognormal function span is 

 0 j < t < ∞ . 

.5. Double-bounded lognormal 

This function introduces an extension to the lognormal infinite 

ength response to allow for both a lower and an upper bound 

o the values of the lognormal. This extension is called the four- 

arameter distribution in [14] , or the double bounded lognormal 

n [11] and confines the lognormal to the range t 0 j < t < t e j by as-

uming that the rate (t − t 0 j ) / (t e j − t) is lognormal. As a result, the

ouble bounded lognormal is defined as: 

 j (t; t 0 j , t e j , μ j , σ
2 
j ) = 

D j (t e j − t 0 j ) 

σ j η(t) 
√ 

2 π
exp 

{
−[ ln ζ (t) − μ j ] 

2 

2 σ 2 
j 

}
(9) 

here ζ (t) = (t − t 0 j ) / (t e j − t) and η(t) = (t − t 0 j ) · (t e j − t) . The

ariables D j , t 0 j , μ j and σ 2 
j 

are the same as for the lognormal and

 e j is the end time of the lognormal. In this case, we have to es-

imate an additional parameter, i.e. t e j . This is, therefore, an addi- 

ional degree of freedom which can lead to a better adjustment of 

he velocity bell curve. 

.6. Generalized extreme value function (GEV) 

Different velocity profile models are needed when the number 

f the subsystems (i.e. the number of muscle fibers involved in the 

uman action) is large, specifically when they tend to the infinite. 

s a result, it could be said that the velocity bell shape tends to 

he lognormal, but there could be some deviations, depending on 

he finite number of muscle fibers involved in the movement and 

heir correlation. 

In this context, the KTT method provides the possibility of fit- 

ing the velocity bell shape with a Generalized Extreme Value 
184 
GEV) function. GEV had been successfully applied to model physi- 

al and biological phenomena. This is a particular case of the Cen- 

ral Limit Theorem for sums of strongly correlated systems [15] . 

EV combines three simple distributions into a single form, giving 

 continuous range of possible shapes. As a consequence, the GEV 

eads to “let the data decide” which distribution is most appropriate 

or each primitive. The GEV is defined as: 

 j (t; t 0 j , ξ j , μ j , σ
2 
j ) = 

D j 

σ j 

s (t − t 0 j ) 
ξ j +1 e −s (t−t 0 j ) (10) 

here 

 (t) = 

⎧ ⎨ 

⎩ 

[
1 + ξ j 

(
t − μ j 

σ j 

)]−1 /ξ j 

, if ξ j � = 0 

exp [ −(t − μ j ) /σ j ] , if ξ j = 0 

(11) 

u j is the location parameter, σ j the scale parameter and ξ j the 

hape parameter. This governs the tail behavior and identifies the 

ell shape as belonging to one of the three sub-families of distri- 

utions: 

1. If ξ j = 0 , then the GEV is a Gumbel distribution, which is un- 

bounded. 

2. If ξ j > 0 , then the GEV is a Fréchet distribution, with its lower 

tail bounded and with a large upper tail. 

3. If ξ j < 0 , then the GEV is a Weibull distribution, with its upper

tail bounded and short. 

As can be seen, the GEV has the same number of parameters as 

he double bounded lognormal. 

An example of velocity profiles reconstructed with each of these 

elocity bell models can be seen in Fig. 4 . Evidently, the clothoid 

econstruction is better than the arc for the trajectory but worse 

or the velocity, except with double bounded lognormal and GEV, 

oth of which have a supplementary degree of freedom. 

. KTT evaluation in complex movements 

In this section, we first introduce the database used for the 

xperiments. Next, we analyze the reconstruction performances 

ith arcs and clothoids by using the different bell-shapes for ve- 

ocity curve modelling to assess the strengths and weaknesses of 

ach KTT configuration. Finally, confirmatory data analysis was per- 

ormed for assessing the meaningful statistical relationships be- 

ween the different approaches for reconstructing both the trajec- 

ory and velocity. 

.1. Database collection of different movements 

We evaluated the KTT in human, animal and robotic move- 

ents. All data were acquired by entirely different sensors, such 

s tablet styli, interactive whiteboards and inertial systems. 

In the case of human movements, we used two handwrit- 

en signatures databases (BiosecureID [16] and MCYT100 [17] ) and 

andwriting on a whiteboard database (IAM On-Line Handwriting 

atabase [18] ). 

For animals, eleven dogs, when walking without any constraints 

uring more than 40 min of recording, were used. A harness, at- 

ached to the dog’s back, was used to retain a wireless Neuron MO- 

AP sensor. 

Finally, we recorded the movement of an anthropomorphic 

obotic arm when writing. The robot wrote 100 doodles on a Wa- 

om Intuos Pro-A4 tablet with an attached WACOM ballpoint pen. 

.2. Experimental performance and statistical study 

Both SNR v and SNR t were used to evaluate the capacity of the 

TT implemented in iDeLog for reconstructing a particular move- 

ent. Better results in SNR v and SNR t indicate that the movement 
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Fig. 4. Comparison between the original velocity and the reconstructed velocity 

with Script Studio and iDeLog with the KTT. 
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Fig. 5. P -values results of the non-parametric Mann-Whitney U -test. Comparison in 

terms of SNR t and SNR v between arc of circumference and clothoid across all the 

databases and bell-shaped functions. 
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as better approximated by the bell-shaped function and trajec- 

ory curves used in the reconstruction. We also computed the ra- 

io SN R v /N and SN R t /N , N being the number of peaks in the bell-

haped velocity functions. This ratio measures the efficiency of 

he KTT, that is to say, how many bell-shaped velocity functions 

re required to reach the obtained SNR v and SNR t . In this case, 

he greater this ratio, the more efficient is the KTT representa- 

ion [19] . We consider that the KTT provides a good approximation 

o the spatiotemporal sequence if the SNR v and SNR t are individu- 

lly greater than 15dB [20] . 

Table 1 shows the averaged SNR v and SNR t results with all the 

atabases as well as the ratio of SN R v /N and SN R t /N and their

tandard deviations. It is worth pointing out that the results pro- 

ided compare the reconstructed spatiotemporal sequence with 

he original one, i.e. the raw signal provided by the devices with- 

ut smoothing them. 
185 
Also, a statistical study was carried out to confirm these find- 

ngs. Firstly, a Jarque-Bera test at 5% significance was applied. The 

ull hypothesis of this test assesses whether a distribution is nor- 

ally distributed by working out the upper tail probability of the 

hi-squared distribution, defined by the skewness and kurtosis of 

he raw data. For SNR v , the null hypotheses were rejected in all 

ases. For SNR t , the hypothesis was rejected in the majority of the 

ases. Consequently, non-parametric tests were applied for a fair 

omparison. 

As we compared pairs of sequences, the statistical similarity 

as assessed through the non-parametric Mann-Whitney U -test. 

he null hypothesis is that two different parameter distributions 

ave no relationship between them. This can be rejected by ob- 

erving that the p -value is greater than p > 0 . 05 . Also, we observe

ow strong the statistical relationship is in the pair of studied pa- 

ameters. 

In the case of using clothoid curves instead of circumference 

rcs, excellent improvements can be observed in SNR t and SN R t /N 

hile SNR v and SN R v /N barely changes. Thus, a slightly higher 

tandard deviation can be found in SNR t , as compared to SNR v , for

andwriting and signatures. However, the SNR t /N or SNR v /N ratios 

re very similar when arcs or clothoids are used. These findings 

re confirmed in the statistical analysis in Fig. 5 . We observe that 

hanging from arcs of circumference to clothoids affects SNR t , but 

arely changes SNR v . 

Furthermore, we can compare how the SNR t and SNR v vary for 

ach dataset. We got similar performances on all functions for sig- 

atures (MCYT100, and BiosecureID). However, slightly better av- 

rages were noted for velocity and trajectory reconstructions with 

he Gaussian and Beta functions. As can be seen in Fig. 6 , the func-

ions are not significantly different. In all cases, the standard devi- 

tion was relatively stable across all functions. Moreover, we ob- 

ained 19.24(1.22)dB and 17.94(1.20)dB in the SNR v for MCYT100 

nd BiosecureID databases with the Gaussian function and using 

rcs and clothoids, respectively. These performances improve the 

revious results obtained with ScriptStudio and iDeLog [7] using 

ognormals. 

In the case of handwriting, the beta function reported 

lightly better SNR averages, with higher standard deviations for 

oth the trajectory (23.89(7.25)dB) and velocity reconstructions 

17.48(6.05)dB), using clothoids. Regarding the SNR v , significant 

tatistical differences were observed when comparing the Gaussian 

unction to the Double-bounded lognormal or to the Generalized 

xtreme value ( p < 0 . 05 ). Furthermore, Fig. 6 reveals that signifi-

ant differences were also detected between the lognormal func- 

ion and the Double-bounded lognormal or Generalized extreme 

alue. 
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Table 1 

Comparison between different KTT configurations for all database in terms of Average (STD). 

Database Velocity Bell 

Using Circumferences Using Clothoids 

SNR t (dB) SN R t /N SNR v (dB) SN R v /N SNR t (dB) SN R t /N SNR v (dB) SN R v /N 

BiosecureID Gaussian 21.10(5.63) 0.82(0.65) 19.22(1.16) 0.73(0.37) 22.71(6.27) 0.88(0.73) 19.24(1.22) 0.73(0.38) 

Lognormal 21.10(5.67) 0.82(0.65) 18.94(1.19) 0.72(0.38) 22.64(6.25) 0.88(0.73) 18.92(1.23) 0.72(0.39) 

Gamma 21.15(5.68) 0.82(0.65) 19.07(1.19) 0.73(0.38) 22.69(6.20) 0.88(0.73) 19.07(1.21) 0.73(0.39) 

Beta 21.09(5.63) 0.81(0.65) 19.17(1.09) 0.73(0.39) 22.53(6.20) 0.87(0.73) 19.20(1.10) 0.73(0.40) 

DBL 20.49(5.66) 0.79(0.64) 18.80(1.37) 0.71(0.42) 22.14(6.26) 0.86(0.73) 18.90(1.40) 0.72(0.43) 

GEV 21.08(5.66) 0.81(0.65) 18.73(1.66) 0.71(0.44) 22.66(6.27) 0.87(0.73) 18.77(1.70) 0.71(0.46) 

MCYT Gaussian 20.00(5.31) 0.79(0.93) 17.94(1.20) 0.69(0.57) 21.38(6.18) 0.84(1.03) 17.86(1.24) 0.69(0.59) 

Lognormal 19.96(5.30) 0.79(0.93) 17.74(1.21) 0.68(0.57) 21.36(6.22) 0.84(1.02) 17.66(1.27) 0.68(0.58) 

Gamma 19.88(5.30) 0.78(0.93) 17.82(1.25) 0.69(0.58) 21.37(6.20) 0.85(1.02) 17.72(1.28) 0.68(0.59) 

Beta 19.93(5.29) 0.79(0.93) 17.94(1.15) 0.69(0.60) 21.34(6.21) 0.84(1.03) 17.88(1.18) 0.69(0.61) 

DBL 19.70(5.36) 1.04(0.94) 17.78(1.46) 0.91(0.67) 21.10(6.18) 1.15(1.02) 17.81(1.47) 0.93(0.67) 

GEV 19.44(5.24) 0.77(0.93) 17.35(1.77) 0.66(0.68) 20.89(6.20) 0.83(1.02) 17.30(1.74) 0.66(0.70) 

Handwriting Gaussian 23.02(6.76) 9.63(7.98) 17.68(5.83) 7.80(7.56) 23.82(7.09) 10.15(8.73) 17.45(5.93) 7.76(7.69) 

Lognormal 23.03(6.80) 9.65(8.06) 17.66(5.71) 7.81(7.48) 23.75(7.09) 10.14(8.76) 17.39(5.73) 7.74(7.51) 

Gamma 23.03(6.71) 9.63(7.92) 17.64(5.58) 7.79(7.34) 23.74(6.99) 10.11(8.62) 17.40(5.59) 7.72(7.38) 

Beta 23.11(7.58) 9.71(8.70) 17.76(7.01) 7.88(8.48) 23.89(7.25) 10.18(8.80) 17.48(6.05) 7.77(7.68) 

DBL 22.95(6.88) 9.64(8.11) 17.57(5.79) 7.73(7.48) 23.83(7.23) 10.17(8.83) 17.40(5.88) 7.70(7.60) 

GEV 22.85(7.38) 9.61(8.53) 17.22(6.32) 7.59(8.00) 23.49(7.31) 10.02(8.66) 16.94(5.60) 7.47(7.12) 

Robot Gaussian 25.69(3.94) 3.07(1.16) 21.47(1.63) 2.55(0.82) 26.27(3.71) 3.15(1.18) 21.57(1.54) 2.56(0.81) 

Lognormal 26.98(3.61) 3.23(1.16) 21.50(1.58) 2.56(0.81) 26.65(3.72) 3.19(1.17) 21.54(1.69) 2.55(0.79) 

Gamma 26.42(3.73) 3.16(1.16) 21.60(1.76) 2.56(0.81) 26.27(3.88) 3.16(1.23) 21.65(1.57) 2.57(0.80) 

Beta 26.53(3.77) 3.16(1.12) 21.42(1.63) 2.54(0.80) 26.13(3.66) 3.14(1.16) 21.47(1.52) 2.55(0.79) 

DBL 25.83(4.39) 3.12(1.29) 20.76(1.71) 2.47(0.79) 26.24(4.33) 3.17(1.30) 20.92(1.54) 2.49(0.80) 

GEV 26.69(3.99) 3.21(1.20) 20.14(1.67) 2.39(0.77) 26.22(3.73) 3.13(1.11) 20.15(1.40) 2.39(0.75) 

Dogs Gaussian 26.09(5.72) 1.44(0.45) 18.84(2.57) 1.02(0.20) 28.00(5.27) 1.55(0.45) 18.93(2.60) 1.03(0.20) 

Lognormal 26.26(5.64) 1.45(0.46) 18.97(2.38) 1.03(0.21) 28.18(5.37) 1.56(0.45) 19.03(2.47) 1.04(0.21) 

Gamma 26.36(5.65) 1.45(0.46) 19.02(2.42) 1.04(0.20) 28.08(5.40) 1.56(0.46) 19.15(2.54) 1.05(0.20) 

Beta 25.94(5.61) 1.43(0.44) 18.93(2.61) 1.03(0.19) 28.04(5.26) 1.55(0.43) 19.07(2.56) 1.04(0.19) 

DBL 25.46(5.47) 1.40(0.43) 18.46(2.27) 1.00(0.18) 27.54(5.30) 1.52(0.43) 18.63(2.26) 1.02(0.18) 

GEV 26.16(5.65) 1.44(0.46) 19.10(2.13) 1.04(0.21) 27.92(5.46) 1.55(0.46) 19.14(2.09) 1.05(0.21) 

∗N denotes the number of peaks in the bell-shaped velocity profiles. 

Fig. 6. P -values results of the non-parametric Mann-Whitney U -test. SNR v and SNR t 
parameter comparison across all pair combination of bell-shaped functions and 

databases. 
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No clear preference regarding a given function was observed 

hen analyzing robotic arm data in Table 1 . The best result was 

een with the Gamma function, and was very similar to that ob- 

ained with Lognormal, Gaussian and Beta functions. In all cases, 

he robotic data had a lower standard deviation compared to the 

ther datasets. One of the main factors contributing to this was the 

onsistent output generated by the robots. While a common rela- 
186 
ionship was found in the functions when SNR t was studied, al- 

ost all function combinations suggested no significant statistical 

elationship ( < 0 . 05 ). 

On dogs, the performances were very similar across the func- 

ions (SNR v ∼ 19 . 00 dB, SNR t ∼ 28 . 00 dB), with the gamma and GEV

unctions achieving the best results. These latter functions reported 

tatistical differences in the case of SNR t , but no differences for 

NR v . Once again, the standard deviation was similar in all cases 

or the trajectory and reconstructed velocity parameters. 

. Conclusion and discussion 

We propose a generalization of the Kinematic Theory of Rapid 

ovement which we call the Kinematic Theory Transform (KTT). 

he KTT models the spatial and temporal information jointly in 

erms of trajectory and velocity. Beyond reproducing rapid move- 

ent as an overlapped combination of arc traversed at lognormal 

elocity, the KTT permits the use of any trajectory and bell-shaped 

unctions to represent the velocity. As a proof of concept, we have 

tudied the application of clothoids for the trajectory that links the 

irtual target points, along with six possible functions for the ve- 

ocity: Gaussian, Lognormal, Gamma, Beta, Double Bounded Log- 

ormal and GEV. 

This paper raises two points. The first is the biological justifica- 

ion and utility of the new primitives, while the second one con- 

erns the biological meaning of the parameters of the new primi- 

ives. 

Regarding the justification of the new primitives, we agree with 

he kinematic theory that has been proposed to study and ana- 

yze rapid human movements. We are aware that it is based on 

he central limit theorem, which predicts a lognormal impulse as a 

esponse to the behavior of a large number of interdependent neu- 

omuscular networks. However, realistic human movements come 
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Table 2 

Relation between parameters and first and second moment in the used bell-shaped functions. 

Name Mean, variance and parameters 

Gaussian 
μ j = M j 

σ 2 
j 

= V j 

Lognormal 

M j = exp (μ j + σ 2 
j 
/ 2) 

V j = [ exp (σ 2 
j 
) − 1] exp (2 μ j + σ 2 

j 
) 

μ j = log (M j / 

√ 

V j + M 

2 
j 
) 

σ 2 
j 

= log (V j /M 

2 
j 
+ 1) 

Gamma 

M j = α j /β j 

V j = α j /β
2 
j 

α j = M 

2 
j 
/V j 

β j = M j /V j 

Beta 

M j = α j / (α j + β j ) 

V j = α j β j / [(α j + β j ) 
2 (α j + β j + 1)] 

α j = [ M j (1 − M j ) /V j − 1] M j 

β j = [ M j (1 − M j ) /V j − 1](1 − M j ) 

Generalized extreme value 

M j = 

{
μ j + σ j (g 1 − 1) /ξ j ξ j � = 0 , ξ j < 1 

μ j + σ j γ ξ j = 0 

V j = 

{
σ 2 

j 
(g 2 − g 2 1 ) /ξ

2 
j 

ξ j � = 0 , ξ j < 0 . 5 

σ 2 
j 
π2 / 6 ξ j = 0 

g k = �(1 − kξ j ) and γ is Euler’s constant 

σ 2 
j 

= 

√ 

6 V j /π

μ j = M j − σ 2 
j 
γ

Then ξ j is adjusted by hill-climbing starting ξ j = 0 and ξ j < 0 . 5 

Double-bounded lognormal 

M j ≈ exp (μ j + σ 2 
j 
/ 2) 

V j ≈ [ exp (σ 2 
j 
) − 1] exp (2 μ j + σ 2 

j 
) 

Obtained by hill-climbing starting μ j = 0 . 6 , σ 2 
j 

= 0 . 2 and t e = t 0 j + (t min , j − t min , j−1 ) 
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rom a limited number of joints, and not all of them are perfectly 

earned and synchronized. This concurs with our observation of 

mperfect lognormals in the databases analyzed. The new primi- 

ives constitute a tool for analytically analyzing the deviations due 

o these non-perfect fits of the conditions of the central limit the- 

rem. 

Regarding the biological meaning of the parameters, SNR v , SNR t , 

umber of Lognormals ( N bLog), SN R v /N blog, and SN R t /N bLog ex-

lain the quality of the neuromotor control. These parameters have 

he same meaning across all functions and help to study the devi- 

tion of the movement carried out from a rapid and well-learned 

ovement. Regarding the Neuromotor action plan parameters, t 0 j 
nd D j have similar numerical values in all proposed functions, and 

herefore maintain the same biological meaning. The parameters of 

he new bell-shaped function, such as α j and β j for the gamma 

nd beta functions, or ζ j , η j , and σ 2 
j 

, which are related to the log-

ormal μ j and σ 2 
j 

through the first and second moments [21] of 

he functions. These parameters explains the Motor program exe- 

ution. These relationships, shown in Table 2 , establish the biolog- 

cal meaning of the new parameters. Additionally, we have been 

areful to maintain the same parameters in almost all proposed 

unctions (See Eqs. (6)–(9)). 

Our experiments improve the state-of-the-art performance in 

erms of SNR v and SNR t when several biological movements such 

s on-line signatures, handwriting on an interactive whiteboard, 

he movement of dogs along with the movement of robotic arms, 

re reconstructed with the KTT. Confirmatory data analysis was 

arried out to assess the statistical differences between the so- 

utions generated by multiple primitives. The KTT mathematical 

ramework has been integrated into an improved version of iDe- 

og [7] . The extended iDeLog is freely distributed as a Matlab tool- 

ox under a non-commercial research license agreement. This is 

 further advance in techniques for modelling spatiotemporal se- 

uences when the velocity curve is bell-shaped. In addition to en- 

iching the iDeLog method with new trajectories and bell-shaped 
187 
unctions in the present work, future effort s will be oriented to ex- 

end this framework to reconstruct 3D movements [22,23] . 
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