Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/119938
Título: | The heavy-tailed gleser model: properties, estimation, and applications | Autores/as: | Olmos, Neveka M. Gómez Déniz, Emilio Venegas, Osvaldo |
Clasificación UNESCO: | 5302 Econometría | Palabras clave: | Gleser Distribution Heavy-Tailed Distribution Maximum Likelihood VaR |
Fecha de publicación: | 2022 | Publicación seriada: | Mathematics | Resumen: | In actuarial statistics, distributions with heavy tails are of great interest to actuaries, as they represent a better description of risk exposure through a type of indicator with a certain probability. These risk indicators are used to determine companies’ exposure to a particular risk. In this paper, we present a distribution with heavy right tail, studying its properties and the behaviour of the tail. We estimate the parameters using the maximum likelihood method and evaluate the performance of these estimators using Monte Carlo. We analyse one set of simulated data and another set of real data, showing that the distribution studied can be used to model income data. | URI: | http://hdl.handle.net/10553/119938 | ISSN: | 2227-7390 | DOI: | 10.3390/math10234577 | Fuente: | Mathematics [EISSN 2227-7390], v. 10 (23), 4577, (Diciembre 2022) |
Colección: | Artículos |
Citas SCOPUSTM
3
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
4
actualizado el 17-nov-2024
Visitas
72
actualizado el 07-jul-2024
Descargas
34
actualizado el 07-jul-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.