Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/119938
Título: The heavy-tailed gleser model: properties, estimation, and applications
Autores/as: Olmos, Neveka M.
Gómez Déniz, Emilio 
Venegas, Osvaldo
Clasificación UNESCO: 5302 Econometría
Palabras clave: Gleser Distribution
Heavy-Tailed Distribution
Maximum Likelihood
VaR
Fecha de publicación: 2022
Publicación seriada: Mathematics 
Resumen: In actuarial statistics, distributions with heavy tails are of great interest to actuaries, as they represent a better description of risk exposure through a type of indicator with a certain probability. These risk indicators are used to determine companies’ exposure to a particular risk. In this paper, we present a distribution with heavy right tail, studying its properties and the behaviour of the tail. We estimate the parameters using the maximum likelihood method and evaluate the performance of these estimators using Monte Carlo. We analyse one set of simulated data and another set of real data, showing that the distribution studied can be used to model income data.
URI: http://hdl.handle.net/10553/119938
ISSN: 2227-7390
DOI: 10.3390/math10234577
Fuente: Mathematics [EISSN 2227-7390], v. 10 (23), 4577, (Diciembre 2022)
Colección:Artículos
Adobe PDF (1,07 MB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.