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Abstract: In actuarial statistics, distributions with heavy tails are of great interest to actuaries, as they
represent a better description of risk exposure through a type of indicator with a certain probability.
These risk indicators are used to determine companies’ exposure to a particular risk. In this paper,
we present a distribution with heavy right tail, studying its properties and the behaviour of the tail.
We estimate the parameters using the maximum likelihood method and evaluate the performance of
these estimators using Monte Carlo. We analyse one set of simulated data and another set of real
data, showing that the distribution studied can be used to model income data.
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1. Introduction

Heavy-tailed distributions have been used to model data in various applied sci-
ences, such as environmental sciences, earth sciences, and economic and actuarial sci-
ences. Insurance datasets tend to be positive and asymmetric to the right, with heavy tails
(see Ibragimov and Prokhorov [1]); distributions with these characteristics are therefore
used to model insurance data. Some authors have extended certain asymmetric distribu-
tions using the slash methodology, for instance, to increase the weight of the right tail,
e.g., Olmos et al. [2,3] in the half-normal (HN) and generalized half-normal (GHN) models,
Astorga et al. [4] in the generalized exponential model (see Gupta and Kundu [5]; Mud-
holkar et al. [6]), and Gómez et al. [7] in the Gumbel model. Two other recent works are,
for example, Bhati and Ravi [8] in the generalized log-Moyal model and Afify et al. [9] in
the heavy-tailed exponential model. It is known that the Pareto distribution and its corre-
sponding generalizations are heavy-tailed distributions; they have been used in several
areas of knowledge, e.g., by Choulakian and Stephens [10], Zhang [11], Akinsete et al. [12],
Nassar and Nada [13], Mahmoudi [14] and Boumaraf et al. [15]. It is important to study
distributions with these characteristics in order to model, for example, insurance datasets
and financial yields. In the present paper, we study a distribution with a heavy right tail
that provides a good fit to family income data. A very necessary function in this paper is
the beta function, denoted by B(a, b), which can be expressed as:

B(a, b) =
∫ 1

0
ta−1(1− t)b−1dt =

∫ ∞

0

ta−1

(1 + t)a+b dt =
Γ(a)Γ(b)
Γ(a + b)

, (1)
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where a > 0, b > 0 and Γ(·) is the gamma function. The beta function is the normalisa-
tion constant of the beta distribution, i.e., we say that the random variable Y has a beta
distribution with parameters a and b if its probability density function (pdf) is given by

fY(y; a, b) =
1

B(a, b)
ya−1(1− y)b−1, 0 < y < 1, (2)

where a > 0 and b > 0.
The incomplete beta function is denoted by B(y; a, b) and can be expressed as:

B(y; a, b) =
∫ y

0
ta−1(1− t)b−1dt, 0 < y < 1, (3)

where a > 0 and b > 0. Another related function is the regularised incomplete beta
function, denoted by Iy(a, b), and expressed as Iy(a, b) = B(y; a, b)/B(a, b).

Gleser [16] introduced a representation of the gamma distribution, the product of a
mixed scale between an unknown distribution and the exponential distribution. The object
of the present paper is to study this unknown distribution, which we call the Gleser (G)
distribution. A random variable X has a G distribution with parameter α if its pdf is
given by

fX(x; α) =
x−α

B(α, α)(1 + x)
, x > 0, (4)

with 0 < α < 1 shape parameter and α = 1− α. The G distribution is a particular case of
the beta prime distribution (see Keeping [17]), also called the inverted beta distribution
(see Tiao and Cuttman [18]), but as it is a distribution with only one parameter, we were
interested in studying it and applying some of its properties.Taking the density given in (4),
and considering a new scale parameter, we obtain a more flexible distribution for modelling
positive data with heavy right tail.

The article is organised as follows. In Section 2 we give some properties of the G
distribution. In Section 3 we study the behaviour of the tail of the G distribution. In Section 4
we carry out parameter estimation using the maximum likelihood (ML) method and do a
simulation study and asymptotic convergence of the ML estimators. Section 5 shows an
application with data from the economic field. In Section 6 we offer some conclusions.

2. The G Distribution

In this section, we study the basic properties of the G distribution given in (4) incorpo-
rating a scale parameter. A random variable X has a G distribution with positive support
and parameters σ and α if its pdf is:

fX(x; σ, α) =
σαx−α

B(α, α)(σ + x)
, x > 0, (5)

where σ > 0 scale parameter and 0 < α < 1 shape parameter; we denote this by X ∼
G(σ, α). The G distribution is an alternative model to distributions with two parameters,
to be used for modelling actuarial statistics data such as the Pareto and GHN distributions,
among others. Figure 1 shows the graph of the G density for different values of parameter
α, fixing σ = 1.
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Figure 1. Examples of G(1, 0.3), G(1, 0.7) and G(1, 0.9).

We perform a brief comparison illustrating that the tails of the G distribution are
heavier when the α parameter decreases. Table 1 shows P(X > x) for different values of x
in this distribution.

Table 1. Tails comparison.

Distribution P (X > 2) P (X > 3) P (X > 4)

G(1, 0.9) 0.04803 0.03537 0.02818
G(1, 0.7) 0.19065 0.15106 0.12697
G(1, 0.3) 0.63376 0.57717 0.53760

2.1. Properties

The following proposition shows some properties of the G distribution.

Proposition 1. Let X ∼ G(σ, α) and Y ∼ Beta(1− α, α). Then,

(a) the G distribution has unimodality (at 0).
(b) σY

1−Y ∼ G(σ, α).
(c) the cumulative distribution function (cdf) of X is given by

FX(x; σ, α) = Iy(α, α), x > 0, (6)

where y = x
σ+x and Iy(·, ·) is the regularised incomplete beta function.

(d) the hazard function of X is decreasing for all x > 0.
(e) the r-th moment of the random variable X does not exist for r ≥ α.
(f) 1

1+X ∼ Beta(α, α).
(g) the quantile function (Q) of the G distribution is given by

Q(p) =
σI−1

p (α, α)

1− I−1
p (α, α)

, 0 < p < 1, (7)

where I−1
p is the inverse function of the regularised incomplete beta function.

Proof. (d) Using the theorem, item (b), given in Glaser [19] we have that

η(x) = −
f ′X(x; σ, α)

fX(x; σ, α)
=

α

x
+

1
σ + x

,
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where fX(x; σ, α) is the pdf given in (5), then the derivative of η(x) with respect to x

η′(x) = −
(

α

x2 +
1

(σ + x)2

)
< 0, ∀x > 0

gives the result.
(e) Considering σ = 1, we claim that the integral

∫ ∞
1

x−α+r

1+x dx is divergent.

In fact, taking g1(x) = x−α+r

1+x and g2(x) = 1
x1+α−r , we have that

lim
x→∞

g1(x)
g2(x)

= lim
x→∞

x
1 + x

= 1 6= 0;

and as the integral
∫ ∞

1
1

x1+α−r dx is divergent for r ≥ α this proves the claim.

On the other hand, since E(Xr) = 1
B(α,α)

∫ ∞
0

x−α+r

1+x dx, by using comparison

0 ≤
∫ ∞

1

x−α+r

1 + x
dx ≤

∫ ∞

0

x−α+r

1 + x
dx,

and the above claim, the result is reached.

The survival function F(t), which is the probability that an item will not fail before
time t, is defined by F(t) = 1− F(t). The survival function for a G random variable is
given by F(t) = 1− It/(σ+t)(α, α).

The hazard function h(t), defined by h(t) = f (t)
F(t)

, for a G random variable is given by

h(t) =
σαt−α

(σ + t)
(

B(α, α)− B
( t

σ+t , α, α
)) , t > 0.

Figure 2 shows the form of the hazard function for different values of α, considering σ = 1.
As we show in Proposition 1, part (d), the hazard function is always a decreasing function.
In the context of reliability, it indicates that failures are more likely to occur earlier in a
product’s useful life.
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Figure 2. Examples of h(t), for α = 0.3, α = 0.7, α = 0.9.
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Using the Q(p) function given in Proposition 1 (g), we can compute the coefficient of
skewness (

√
β1) and the coefficient of kurtosis (β2) for the random variable X ∼ G(σ, α)

√
β1 =

Q
( 3

4
)
+ Q

(
1
4

)
− 2Q

( 2
4
)

Q
( 3

4
)
−Q

(
1
4

) , β2 =
Q
( 3

8
)
−Q

(
1
8

)
+ Q

( 7
8
)
−Q

( 5
8
)

Q
( 3

4
)
−Q

(
1
4

) .

Figure 3 depicts plots for the skewness and kurtosis coefficients in the G distribution.
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Figure 3. Plots of the skewness and kurtosis coefficients for the G model.

2.2. Actuarial Measure

The value at risk (VaR) is used to assess the risk exposure, i.e., it can be used to
determine the amount of capital necessary to liquidate adverse results. The VaR of the
random variable X ∼ G(σ, α) is defined as (see Artzner [20] and Artzner et al. [21])

VaRp = Q(p) =
σI−1

p (α, α)

1− I−1
p (α, α)

, 0 < p < 1,

where I−1
p is the inverse function of the regularised incomplete beta function.

Figure 4 shows graphs of the VaRp measurement of distribution G(10, α) for different
values of parameter α. We may observe that the smaller the value of parameter α, the larger
the value of the VaRp measurement.
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Figure 4. Plots of the VaR, for G(10, 0.3), G(10, 0.5) and G(10, 0.8).

2.3. Order Statistics

Let X1, . . . , Xn be a random sample of the random variable X ∼ G(σ, α), let us denote
by X(j) the jth−order statistics, j ∈ {1, . . . , n}.

Proposition 2. The pdf of X(j) is

fX(j)
(x; σ, α) =

n!
(j− 1)!(n− j)!

σαx−α

B(α, α)(σ + x)

[
Ix/(σ+x)(α, α)

]j−1 [
1− Ix/(σ+x)(α, α)

]n−j
,

where x > 0. In particular, the pdf of the minimum, X(1), is

fX(1)
(x; σ, α) =

nσαx−α

B(α, α)(σ + x)

[
1− Ix/(σ+x)(α, α)

]n−1
, x > 0 (8)

and the pdf of the maximum, X(n), is

fX(n)
(x; σ, α) =

nσαx−α

B(α, α)(σ + x)

[
Ix/(σ+x)(α, α)

]n−1
, x > 0.

Proof. Since we are dealing with an absolutely continuous model, the pdf of the jth−order
statistics is obtained by applying

fX(j)
(x; σ, α) =

n!
(j− 1)!(n− j)!

fX(x; σ, α) [FX(x; σ, α)]j−1 [1− FX(x; σ, α)]n−j, j ∈ {1, . . . , n}

where F and f denote the cdf and pdf of the parent distribution, X ∼ G(σ, α) in this case.

2.4. Entropy

In this subsection we will discuss the Shannon and Rényi entropies of the G model.

2.4.1. Shannon Entropy

The following lemma will be very useful for calculating the Shannon entropy.

Lemma 1. Let X ∼ G(σ, α), then we have the following results.

1. E(log X) = log σ + ψ(α)− ψ(α),
2. E(log(σ + X)) = log σ− γ− ψ(α),

where ψ(·) is the digamma function and γ = −ψ(1) is Euler’s constant.

Proof. Both results are obtained directly using the pdf given in (5).
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The Shannon (S) entropy (see Shannon [22]) for a random variable X is defined as

S(X) = −E(log fX(X)). (9)

Therefore, it can be verified that the S entropy for the G model is

Proposition 3. Let X ∼ G(σ, α). Then the Shannon entropy of X is

S(X) = log σ + log B(α, α)− γ + αψ(α)− (1 + α)ψ(α). (10)

Figure 5 shows the Shannon entropy for the G model fixing σ = 1.
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Figure 5. Shannon entropy of G(α, σ = 1) for different values of α.

2.4.2. Rényi Entropy

A generalization of the Shannon entropy is the Rényi (Rp) entropy, which is defined as

Rp(X) =
1

1− p
log
(∫ ∞

0
[ fX(x)]pdx

)
. (11)

Therefore, it can be verified that the Rp entropy for the G model is

Proposition 4. Let X ∼ G(σ, α). Then the Rényi entropy of X is

Rp(X) =
1

1− p
(log Γ(ξ) + log Γ(p− ξ)− log Γ(p)− (p− 1) log σ− p log B(α, α)), (12)

where ξ = 1− pα > 0.

Corollary 1. Let X ∼ G(σ, α) with S(X) and Rp(X) the Shannon and Rényi entropies. Then
we have

lim
p→1

Rp(X) = S(X). (13)

3. Tail of the Distribution

A random variable with a non-negative support, like the classic Pareto distribution,
is commonly used in insurance contexts to model the amount of losses. The size of
the distribution tail is fundamental if we want the chosen model to capture quantities
sufficiently removed from the start of the distribution support, i.e., atypical (extreme)
values. The concept of heavy tail is fundamental for this and other financial scenarios.

The use of heavy right-tailed distributions is of vital importance in general insurance.
Pareto, Log-normal and Weibull distributions, among others, have been used to model third
party liability insurance losses for motor vehicles, re-insurance and catastrophe insurance.
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Let S be the class of subexponential distributions. That is, F ∈ S defined in R+

satisfies that:

lim
x→∞

1− F∗2(x)
1− F(x)

= 2,

where F∗j is the j-fold convolution of F.
The following Lemma, appearing, among others, in Chapet 2, p. 55 in Rolski et al. [23],

is required in the next Theorem.

Lemma 2. Let F(x) and H(x) be two distributions on R+ and assume that there exists a constant
c > 0 such that

lim
x→∞

H(x)
F(x)

= c. (14)

Then, F ∈ S if and only if H ∈ S .

Theorem 1. Let the cdf of G(σ, α) given in (6). Then, FX(x; σ, α) ∈ S .

Proof. Let HX(x; σ, α) = (σ/(σ + x))α the survival function of the Pareto Type II distribu-
tion (Lomax distribution). By using this together with the complementary of the cdf (6)
and by computing (14) we get, after applying L’Hopital’s rule, that

lim
x→∞

H(x)
F(x)

= αB(α, α) > 0.

Now, taking into account that the Pareto type II distribution belongs to the class of
subexponential distributions, we have the result.

As a consequence of the previous Theorem (see Rolski et al. [23] p. 50), we have the
following Corollary.

Corollary 2. If X1 and X2 are independent and identically distributed random variables with
distributions given in (6), then as x→ ∞

Pr(X1 + X2 > x) ∼ Pr(max{X1, X2} > x).

Proof. The result is a consequence of the fact that FX(x; σ, α) ∈ S .

Proposition 5. It is verified that FX(x; σ, α) is heavy right-tailed distribution.

Proof. Since FX(x; σ, α) ∈ S , the result is a consequence of applying Theorem 2.5.2 in
Rolski et al. [23].

Another way to see that FX(x; σ, α) is a heavy right-tailed distribution is by computing
the limit limx→∞(− log FX(x; σ, α)/x), which results 0. Observe that − log FX(x; σ, α)/x)
is the hazard function of X.

As a consequence of the last result, we have the following Corollary:

Corollary 3. It is verified that lim supx→∞ esxFX(x; σ, α) = ∞, s > 0.

In this case the distribution fails to possess any positive exponential moment, i.e.,∫
exp(sx) dFX(x; σ, α) = ∞ for all s > 0 see Chapter 1, p. 2 [24]. Distributions of this type

have moment generating function MFX(x;σ,α)(s) = ∞, for all s > 0. This occurs, for example,
with the log-normal distribution.
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An important issue in extreme value theory is regular variation (see Bingham [25] and
Konstantinides [26]). This is a flexible description of the variation of some functions accord-
ing to the polynomial form of the type x−δ + o(x−δ), δ > 0. This concept is formalized in
the following definition.

Definition 1. A CDF (measurable function) is called regular varying at infinity with index −δ if
it holds:

lim
x→∞

F(τx)
F(x)

= τ−δ,

where τ > 0 and the parameter δ ≥ 0 is called the tail index.

The following proposition establishes that the survival function of the G distribution
is a distribution with regular variation.

Proposition 6. The survival function of G(σ, α) is regularly varying with tail index α.

Proof. Applying the above definition and using L’Hopital’s Rule, we have that

lim
x→∞

F(tx)
F(x)

= t−α+1 lim
x→∞

(
σ + x
σ + tx

)−α( σ + x
σ + tx

)α−1( σ + x
σ + tx

)2
= t−α+1 lim

x→∞

σ + x
σ + tx

,

Calculating the limit to the right, we obtain the result.

In actuarial settings and individual and collective risk models, the practitioner is
usually interested in the random variable Sn = ∑n

i=1 Xi for n ≥ 1. Although its pdf is
difficult or impossible to calculate in practice, we can approximate its probabilities using
the following Corollary (see Jessen and Mikosch [27]).

Corollary 4. If X1, . . . , Xn are iid random variables G(σ, α) and Sn = ∑n
i=1 Xi, n ≥ 1, then

Pr(Sn > x) ∼ n Pr(X1 > x), as x → ∞. (15)

Therefore, if Pn = maxi=1,...,n Xi, n ≥ 1, we have that

Pr(Sn > x) ∼ n Pr(X > x) ∼ Pr(Pn > x).

This means that for large x the event {Sn > x} is due to the event {Pn > x}. Therefore,
high thresholds being exceeded by the sum Sn are due to this threshold being exceeded by
the largest value in the sample.

As Jessen and Mikosch [27] point out, expression (15) can be taken as the definition
of a subexponential distribution. The class of those distributions is larger than the class
of regularly varying distributions. The result, given in Corollary 4, remains valid for
subexponential distributions because the subexponentiality of Sn implies subexponentiality
of X1. Usually, this property is referred to as convolution root closure of subexponential
distributions. More details can be viewed in [28,29].

On the other hand, let the random variable X, whose support is 0 < x < ∞, represents
either a policy limit or reinsurance deductible (from an insurer’s perspective); then the
limited expected value function L of X with cdf F(x), is defined by (see Boland [30] and
Hogg and Klugman [31]):

L(x) = E[min(X, x)] =
∫ x

0
y dF(y) + xF(x),
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which is the expectation of the cdf F(x) truncated at this point. In other words, it represents
the expected amount per claim retained by the insured on a policy with a fixed amount
deductible of x. Observe that we integrate according to the interval (0, x).

Proposition 7. Let X be a random variable following the pdf (5). Then the limited expected value
of X is given by

L(z) =
z2

σB(α, α)(2− α)

(σ

z

)α

2F1(2− α, 1, 3− α,−z/σ) + zF(z), α < 1,

where 2F1 represents the hypergeometric function.

Proof. By making the change of variable t = x/(z− x) in the integral

I =
σα

B(α, α)

∫ z

0

dx
xα−1(σ + x)

,

gives the result.

4. Inference

In this section we estimate the parameters of the G model by the ML method, and dis-
cuss a simulation study and asymptotic estimation of the ML estimators.

4.1. ML Estimation

For a random sample x1, . . . , xn derived from the G(σ, α) distribution, the log-likelihood
function can be written as

`(σ, α) = nα log σ− α
n

∑
i=1

log xi − n log B(α, α)−
n

∑
i=1

log(σ− xi). (16)

The score equations are given by:

nα

σ
−

n

∑
i=1

1
σ + xi

= 0, (17)

log σ− log x + ψ(1− α)− ψ(α) = 0, (18)

where ψ(·) is the digamma function and log x = 1
n ∑n

i=1 log xi. From (17) we obtain

α̂ =
σ̂

n

n

∑
i=1

1
σ̂ + xi

, (19)

and the ML estimator for σ (σ̂) is obtained by solving numerically the following equation

log σ̂ = log x + ψ

(
σ̂

n

n

∑
i=1

1
σ̂ + xi

)
− ψ

(
1− σ̂

n

n

∑
i=1

1
σ̂ + xi

)
. (20)

Equation (20) can be solved by using numerical procedures such as the Newton-Raphson
algorithm. Alternatively, these estimates can be found by directly maximizing the log-
likelihood surface given by (16) and using the “optim” subroutine in the R software
package [32] version 4.2.1.

4.2. Simulation Study

To examine the behaviour of the ML estimation, we present a simulation study to
evaluate its performance, evaluating the σ and α parameters in the G model. The simu-
lation was analysed by generating 1000 samples of size n = 100, 200 and 500 from the G
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model. The object of this simulation was to study the behaviour of the ML of the G model
parameters. Algorithms 1 and 2 can be used to generate random numbers from the G
model, as shown below.

Algorithm 1 For simulating from the X ∼ G(σ, α) can proceed as follows

Step 1: Generate Y ∼ Uni f orm(0, 1).

Step 2: Compute X =
σI−1

Y (α,α)
1−I−1

Y (α,α)
.

Algorithm 2 For simulating from the X ∼ G(σ, α) can proceed as follows

Step 1: Generate Y ∼ Beta(α, α).
Step 2: Compute X = σY

1−Y .

For each sample generated from the G distribution, the ML estimates are obtained by
applying the Newton-Raphson algorithm. In Table 2 the empirical bias, the mean of the
standard errors (SE), the root of the empirical mean squared error (RMSE), and the 95%
coverage probability (CP) based on the asymptotic distribution for ML estimators are given
for the estimators of the parameters. As Table 2 shows, the performance of the estimates
improves when n increases.

Table 2. Empirical bias, SE, RMSE and 95% CP for the ML estimators of σ and α in the G distribution
with different combinations of parameters.

True Value n = 100 n = 200 n = 500
σ α Par. Bias SE RMSE CP Bias SE RMSE CP Bias SE RMSE CP

1

0.2 σ 0.1934 0.5709 0.6543 0.9402 0.1113 0.3727 0.4083 0.9474 0.0494 0.2219 0.2292 0.9540
α 0.0054 0.0260 0.0270 0.9618 0.0039 0.0181 0.0186 0.9562 0.0022 0.0113 0.0116 0.9542

0.5 σ 0.2191 0.7544 0.8668 0.9004 0.1006 0.4920 0.5425 0.9156 0.0468 0.3010 0.3131 0.9370
α 0.0004 0.0679 0.0667 0.9258 −0.0012 0.0496 0.0491 0.9308 0.0005 0.0322 0.0320 0.9424

0.8 σ 0.0727 0.5090 0.5498 0.8988 0.0348 0.3463 0.3602 0.9216 0.0118 0.2137 0.2143 0.9432
α −0.0044 0.0258 0.0271 0.9550 −0.0022 0.0179 0.0183 0.9496 −0.0010 0.0112 0.0114 0.9510

10

0.2 σ 1.9401 5.7013 6.4320 0.9394 1.1103 3.7292 4.0676 0.9486 0.4651 2.2140 2.2556 0.9528
α 0.0052 0.0260 0.0268 0.9562 0.0037 0.0181 0.0189 0.9492 0.0020 0.0113 0.0112 0.9560

0.5 σ 1.9611 7.4418 8.4714 0.8872 1.0610 4.9654 5.2373 0.9176 0.4148 2.9938 3.0764 0.9360
α −0.0014 0.0681 0.0668 0.9216 0.0002 0.0497 0.0490 0.9344 0.0000 0.0322 0.0315 0.9484

0.8 σ 0.6832 5.0843 5.3895 0.8952 0.3724 3.4679 3.5625 0.9236 0.1692 2.1465 2.1721 0.9406
α −0.0047 0.0259 0.0274 0.9510 −0.0020 0.0179 0.0181 0.9544 −0.0008 0.0112 0.0113 0.9534

4.3. Fisher’s Information Matrix

Let us now consider X ∼ G(σ, α). For a single observation x of X, the log-likelihood
function for θ = (σ, α) is given by

`(θ) = α log σ− α log x− log B(α, α)− log(σ + x).

The corresponding first and second partial derivatives of the log-likelihood function
are derived in Appendix A. It can be shown that the Fisher’s information matrix, denoted
by IF(·), for the G distribution is provided by

IF(θ)=

(
αα
2σ2 − 1

σ

− 1
σ ψ′(α) + ψ′(α)

)
,

where ψ′(·) is the trigamma function.

Proposition 8. The ML estimate of θ is consistent and asymptotically normal, verifying
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√
n
(

θ̂− θ
) L−→ N2(0, IF(θ)

−1), as n→ ∞.

Proof. The distribution satisfies the regularity conditions see Lehmann and Casella [33]
p. 449 under which the ML estimator θ̂ of θ is consistent and asymptotically normal.

Thus the asymptotic variance of the ML estimator θ̂ is the inverse of Fisher’s informa-
tion matrix IF(θ). Since the parameters are unknown, the observed information matrix is
usually considered, where the unknown parameters are estimated by ML.

5. Applications

In this section we analyse two applications, the first with simulated data and the
second with real data. To compare the models, we use the Akaike information criterion AIC
(see Akaike [34]) and the Bayesian information criterion BIC (see Schwarz [35]). In these
applications we use the GHN model (see Cooray and Ananda [36]) and the Pareto model
(see Arnold [37]). These models present a certain similarity in form with the G model and
have greater flexibility in their coefficient of kurtosis. Hence the Pareto and GHN models
are considered in the comparison of the fits to the two data sets. The two models are given
respectively by:

1. f (x; α, β) = βαβ

xβ+1 , x > α,

2. f (x; σ, α) = 2αxα−1

σα φ
(( x

σ

)α
)

, x > 0,

where φ denotes the density function of the standard normal distribution and σ, α, β > 0.

5.1. Numerical Application

In this numerical application we analyse 200 simulated data generated from the
G(1, 0.3) model using Algorithm 1 given in Section 4.2. The object of this numerical
example is to use the ML method given in Section 4.1 to see whether, when the G model is
fitted, it has its own form.

Table 3 shows the ML estimates for the parameters of the G model, Pareto model and
GHN model, as well as the AIC and BIC values for each model.

Table 3. 200 simulated data: Model, ML estimates, AIC and BIC values.

Model ML Estimates AIC BIC

G(σ, α) σ̂ = 0.890, α̂ = 0.295 1967.556 1974.152
Pareto(α, β) α̂ = 0.002, β̂ = 0.121 2144.958 2151.555
GHN(σ, α) σ̂ = 204.871, α̂ = 0.144 2143.358 2151.787

We observe that the smallest values of the AIC and BIC criteria correspond to the G
model, meaning that the G model fits the data better than the other models. This is to
be expected, since the data were simulated from the G model. The above values for the
measures indicate that the G model has its own form and that it may be difficult to replace
it by any other known two-parameter model.

5.2. Application with Real Data

This dataset comes from the Survey of Consumer Finances (SCF), a nationally repre-
sentative sample that contains extensive information on assets, liabilities, income, and de-
mographic characteristics of those sampled (potential U.S. customers). It contains a random
sample of 500 households in USA with positive incomes that were interviewed in the 2004
survey. The variable of interest is the annual income of the family in thousands of US
dollars divided by the number of members in the household. The data can be recovered
from the web page https://www.federalreserve.gov/econres/scfindex.htm (accessed on
5 January 2022). The descriptive statistics of these data are shown in Table 4, where CS is
the coefficient of skewness of the sample and CK is the coefficient of kurtosis of the sample.

https://www.federalreserve.gov/econres/scfindex.htm
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Table 4. Descriptive statistics for income data.

n Median Mean Variance CS CK

500 21.125 216.709 11,270,001 0.435 1.655

Figure 6 presents two boxplot graphs; the left boxplot shows a very extreme datum
and the right boxplot shows the dataset after elimination of the extreme datum to show
the other extreme data that cannot be seen in the left boxplot. These atypical data make
the right tail heavier. It may be noted that the majority of the observations are around
21,125 dollars per capita per family, and there is a very atypical value which is an income
of 75 million dollars.



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Figure 6. Boxplot for income data (top) and boxplot for income data without extreme data (bottom).

Table 5 shows the ML estimates for the parameters of the G, Pareto and GHN models,
as well as the values of the AIC and BIC criteria for each model.

Table 5. ML estimates for the income data with corresponding standard errors (in parentheses),
and AIC and BIC values.

Model ML Estimates AIC BIC

G(σ, α) σ̂ = 21.555 (6.264),
α̂ = 0.497 (0.033)

5139.176 5147.605

Pareto(α, β)
α̂ = 0.065 (0.001),
β̂ = 0.171 (0.008)

5867.910 5876.339

GHN(σ, α) σ̂ = 64.313 (6.815),
α̂ = 0.335 (0.008)

5280.360 5288.789

We observe that the smallest values of the AIC and BIC criteria correspond to the G
model, meaning that the G model fits the data better than the Pareto and GHN models.
The SE of the ML of the G model were calculated using Section 4.1.

Table 6 presents estimates of the VaR for the G, Pareto, and GHN models at the levels of
0.50, 0.60, 0.70, 0.80, 0.90, and 0.95 and empirical quantiles. It is well known that the models
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with the highest VaR values have the heaviest tails. Then, based on this characteristic, we
can see that the G model has higher VaR values than the GHN model. On the other hand,
the G model provides higher VaR values up to the 0.70 level than the Pareto model since the
Pareto VaRs explode at high (but not too high) quantiles. Due to the selection criteria of the
AIC and BIC models, the G model best fits the income data. Figure 7 shows the behavior
of the VaR values of the three models. Figure 8 shows the empirical cdf with estimated G
and Pareto cdf’s, which also shows the excellent agreement between the G model and the
income data.

Table 6. Comparison of VaR of different models for income data and empirical quantiles in parentheses.

Model\Significance 0.50
(21.125)

0.60
(28.600)

0.70
(40.000)

0.80
(60.000)

0.90
(100.000)

0.95
(210.250)

G (σ̂, α̂) 22.034 41.764 85.060 209.891 889.770 3632.538
Pareto (α̂, β̂) 3.744 13.805 74.248 795.165 45800.120 2638007
GHN (σ̂, α̂) 19.836 38.426 71.568 134.928 284.355 479.988
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Figure 7. Plots of the VaR using the values in Table 6, for G, Pareto and GHN models.
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Figure 8. Plots of the empirical cdf. with estimated G cdf and estimated Pareto cdf models.

6. Discussion

This paper presents a study of the G model, used in a characterization of the gamma
distribution. The G model is a special case of the prime beta model with one scale parameter.
The G model has two parameters and this makes it an attractive competitor against various
two-parameter models used in actuarial statistics. The G model appears to be a viable
alternative for fitting data with extreme observations. Some other characteristics of the G
model are:
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• The smaller parameter α, the heavier the right tail of the G model.
• The G model has an explicit representation given in Proposition 1 (b).
• Cdf, risk function and quantile function are explicit and are represented by

known functions.
• The VaR measurement is explicit and is used to show that the right tail of the G model

is heavy.
• The applications show that the G model has its own characteristic compared with

other two-parameter models, and that the G model can be a good candidate for
modelling income data with a heavy tail.
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Appendix A

The first derivatives of `(θ) are given by

∂`(θ)

∂σ
=

α

σ
− 1

σ + x
,

∂`(θ)

∂α
= log(σ)− log(x) + ψ(α)− ψ(α).

The second derivatives of l(θ) are:

∂2`(θ)

∂σ2 = − α

σ2 +
1

(σ + x)2 ,
∂2`(θ)

∂σ∂α
=

1
σ

,
∂2`(θ)

∂α2 = −ψ′(α)− ψ′(α),

where ψ(·) and ψ′(·) are the digamma and trigamma functions respectively.
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