Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/119938
DC FieldValueLanguage
dc.contributor.authorOlmos, Neveka M.en_US
dc.contributor.authorGómez Déniz, Emilioen_US
dc.contributor.authorVenegas, Osvaldoen_US
dc.date.accessioned2023-01-09T12:56:59Z-
dc.date.available2023-01-09T12:56:59Z-
dc.date.issued2022en_US
dc.identifier.issn2227-7390en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/119938-
dc.description.abstractIn actuarial statistics, distributions with heavy tails are of great interest to actuaries, as they represent a better description of risk exposure through a type of indicator with a certain probability. These risk indicators are used to determine companies’ exposure to a particular risk. In this paper, we present a distribution with heavy right tail, studying its properties and the behaviour of the tail. We estimate the parameters using the maximum likelihood method and evaluate the performance of these estimators using Monte Carlo. We analyse one set of simulated data and another set of real data, showing that the distribution studied can be used to model income data.en_US
dc.languageengen_US
dc.relation.ispartofMathematicsen_US
dc.sourceMathematics [EISSN 2227-7390], v. 10 (23), 4577, (Diciembre 2022)en_US
dc.subject5302 Econometríaen_US
dc.subject.otherGleser Distributionen_US
dc.subject.otherHeavy-Tailed Distributionen_US
dc.subject.otherMaximum Likelihooden_US
dc.subject.otherVaRen_US
dc.titleThe heavy-tailed gleser model: properties, estimation, and applicationsen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/math10234577en_US
dc.identifier.scopus85143615019-
dc.contributor.orcid0000-0002-5434-2853-
dc.contributor.orcid0000-0002-5072-7908-
dc.contributor.orcid0000-0001-6643-6972-
dc.contributor.authorscopusid41961405100-
dc.contributor.authorscopusid15724912000-
dc.contributor.authorscopusid6506769962-
dc.identifier.eissn2227-7390-
dc.identifier.issue23-
dc.relation.volume10en_US
dc.investigacionCiencias Sociales y Jurídicasen_US
dc.type2Artículoen_US
dc.description.notasMSC: 62E15; 62E20 This article belongs to the Section Probability and Statisticsen_US
dc.utils.revisionen_US
dc.date.coverdateDiciembre 2022en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-ECOen_US
dc.description.sjr0,446-
dc.description.jcr2,4-
dc.description.sjrqQ2-
dc.description.jcrqQ1-
dc.description.scieSCIE-
dc.description.miaricds10,4-
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR TIDES- Técnicas estadísticas bayesianas y de decisión en la economía y empresa-
crisitem.author.deptIU de Turismo y Desarrollo Económico Sostenible-
crisitem.author.deptDepartamento de Métodos Cuantitativos en Economía y Gestión-
crisitem.author.orcid0000-0002-5072-7908-
crisitem.author.parentorgIU de Turismo y Desarrollo Económico Sostenible-
crisitem.author.fullNameGómez Déniz, Emilio-
Appears in Collections:Artículos
Adobe PDF (1,07 MB)
Show simple item record

SCOPUSTM   
Citations

3
checked on Nov 17, 2024

WEB OF SCIENCETM
Citations

4
checked on Nov 17, 2024

Page view(s)

72
checked on Jul 7, 2024

Download(s)

34
checked on Jul 7, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.