Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/118895
Título: | Using data mining to estimate patterns of contagion-risk interactions in an intercity public road transport system | Autores/as: | Cristóbal, Teresa Quesada-Arencibia, Alexis de Blasio, Gabriele S. Padrón, Gabino Alayón, Francisco García, Carmelo R. |
Clasificación UNESCO: | 120304 Inteligencia artificial 3327 Tecnología de los sistemas de transporte |
Palabras clave: | Close contact patterns Clustering COVID-19 Data mining Epidemics, et al. |
Fecha de publicación: | 2022 | Proyectos: | Proyecto COVID19-03 | Publicación seriada: | IEEE Access | Resumen: | The COVID-19 pandemic has had very negative effects on public transport systems. These effects have compromised the role they should play as enablers of social equity and environmentally sustainable mobility and have caused serious economic losses for public transport operators. For this reason, in the context of pandemics, meaningful epidemiological information gathered in the specific framework of these systems is of great interest. This article presents the findings of an investigation into the risk of transmission of a respiratory infectious disease in an intercity road transport system that carries millions of passengers annually. To achieve this objective, a data mining methodology was used to generate the data required to ascertain the level of risk. Using this methodology, the occupancy of vehicle seats by passengers was simulated using two different strategies. The first is an empirical approach to the behaviour of passengers when occupying a free seat and the second attempts to minimise the risk of contagion. For each of these strategies, the interactions with risk of infection between passengers were estimated, the patterns of these interactions on the different routes of the transport system were obtained using k-means clustering technique, and the impact of the strategies was analysed. | URI: | http://hdl.handle.net/10553/118895 | ISSN: | 2169-3536 | DOI: | 10.1109/ACCESS.2022.3206838 | Fuente: | IEEE Access [ISSN 2169-3536], v. 10, (Septiembre 2022) |
Colección: | Artículos |
Citas SCOPUSTM
84
actualizado el 15-dic-2024
Citas de WEB OF SCIENCETM
Citations
74
actualizado el 15-dic-2024
Visitas
143
actualizado el 23-sep-2024
Descargas
318
actualizado el 23-sep-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.