Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/118895
Campo DC Valoridioma
dc.contributor.authorCristóbal, Teresaen_US
dc.contributor.authorQuesada-Arencibia, Alexisen_US
dc.contributor.authorde Blasio, Gabriele S.en_US
dc.contributor.authorPadrón, Gabinoen_US
dc.contributor.authorAlayón, Franciscoen_US
dc.contributor.authorGarcía, Carmelo R.en_US
dc.date.accessioned2022-10-17T17:39:02Z-
dc.date.available2022-10-17T17:39:02Z-
dc.date.issued2022en_US
dc.identifier.issn2169-3536en_US
dc.identifier.urihttp://hdl.handle.net/10553/118895-
dc.description.abstractThe COVID-19 pandemic has had very negative effects on public transport systems. These effects have compromised the role they should play as enablers of social equity and environmentally sustainable mobility and have caused serious economic losses for public transport operators. For this reason, in the context of pandemics, meaningful epidemiological information gathered in the specific framework of these systems is of great interest. This article presents the findings of an investigation into the risk of transmission of a respiratory infectious disease in an intercity road transport system that carries millions of passengers annually. To achieve this objective, a data mining methodology was used to generate the data required to ascertain the level of risk. Using this methodology, the occupancy of vehicle seats by passengers was simulated using two different strategies. The first is an empirical approach to the behaviour of passengers when occupying a free seat and the second attempts to minimise the risk of contagion. For each of these strategies, the interactions with risk of infection between passengers were estimated, the patterns of these interactions on the different routes of the transport system were obtained using k-means clustering technique, and the impact of the strategies was analysed.en_US
dc.languageengen_US
dc.relationProyecto COVID19-03en_US
dc.relation.ispartofIEEE Accessen_US
dc.sourceIEEE Access [ISSN 2169-3536], v. 10, (Septiembre 2022)en_US
dc.subject120304 Inteligencia artificialen_US
dc.subject3327 Tecnología de los sistemas de transporteen_US
dc.subject.otherClose contact patternsen_US
dc.subject.otherClusteringen_US
dc.subject.otherCOVID-19en_US
dc.subject.otherData miningen_US
dc.subject.otherEpidemicsen_US
dc.subject.otherInformation managementen_US
dc.subject.otherIntelligent transport systemsen_US
dc.subject.otherPublic healthen_US
dc.titleUsing data mining to estimate patterns of contagion-risk interactions in an intercity public road transport systemen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.identifier.doi10.1109/ACCESS.2022.3206838en_US
dc.identifier.isiWOS:000861316800001-
dc.relation.volume10en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.description.observacionesProyectos de Investigación: Research was supported by the University of Las Palmas de Gran Canaria (ULPGC) through ProjectCOVID19-03 Project RTI2018-097263-B-I00en_US
dc.description.numberofpages18en_US
dc.utils.revisionen_US
dc.date.coverdateSeptiembre 2022en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
dc.description.sjr0,926-
dc.description.jcr3,9-
dc.description.sjrqQ1-
dc.description.jcrqQ2-
dc.description.scieSCIE-
dc.description.miaricds10,4-
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0002-8313-5124-
crisitem.author.orcid0000-0002-6233-567X-
crisitem.author.orcid0000-0002-5573-1156-
crisitem.author.orcid0000-0002-7285-9194-
crisitem.author.orcid0000-0003-1433-3730-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.fullNameQuesada Arencibia, Francisco Alexis-
crisitem.author.fullNameDe Blasio, Gabriele Salvatore-
crisitem.author.fullNamePadrón Morales, Gabino-
crisitem.author.fullNameAlayón Hernández,Francisco Javier-
crisitem.author.fullNameGarcía Rodríguez, Carmelo Rubén-
Colección:Artículos
Adobe PDF (3,49 MB)
Vista resumida

Visitas

94
actualizado el 24-feb-2024

Descargas

13
actualizado el 24-feb-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.