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ABSTRACT The COVID-19 pandemic has had very negative effects on public transport systems. These
effects have compromised the role they should play as enablers of social equity and environmentally
sustainable mobility and have caused serious economic losses for public transport operators. For this reason,
in the context of pandemics, meaningful epidemiological information gathered in the specific framework
of these systems is of great interest. This article presents the findings of an investigation into the risk of
transmission of a respiratory infectious disease in an intercity road transport system that carries millions of
passengers annually. To achieve this objective, a data mining methodology was used to generate the data
required to ascertain the level of risk. Using this methodology, the occupancy of vehicle seats by passengers
was simulated using two different strategies. The first is an empirical approach to the behaviour of passengers
when occupying a free seat and the second attempts to minimise the risk of contagion. For each of these
strategies, the interactions with risk of infection between passengers were estimated, the patterns of these
interactions on the different routes of the transport system were obtained using k-means clustering technique,
and the impact of the strategies was analysed.

INDEX TERMS Close contact patterns, clustering, COVID-19, data mining, epidemics, information
management, intelligent transport systems, public health.

I. INTRODUCTION

As a result of the COVID-19 pandemic, the world has had
to face multiple challenges in its efforts to mitigate the
spread and consequences of the disease. In the context of
public transport systems, operators and authorities have had
to develop measures to prevent infections among their users.
The implementation of these measures, together with the
public perception of the risk of infection associated with the
use of public transport, has on occasion caused a considerable
loss of passengers on public transport systems, up to 90% in
some cases [1], [2], [3], jeopardising their role as enablers
of social equity [4]. Therefore, in the context of epidemics or
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pandemics, it is of interest to have information that allows for
an objective assessment of infection risk on public transport,
as this knowledge can be used to develop and assess effective
measures to mitigate it.

This article presents the findings of a research study
designed with the aim of determining the infection risk
among passengers on the different routes of a public road
transport system (PRTS). This information can be used to
identify the routes with the highest risk of infection and to
assess the impact of different measures to minimise the poten-
tial risk. Such measures include devoting more resources to
those routes with the highest risk, or other measures that
do not involve more resources, such as using certain seating
strategies for passengers. The latter type of measures provide
alternatives to those that have been routinely implemented
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during the COVID-19 pandemic, such as suspending trans-
port services or limiting the capacity of public transport vehi-
cles. In this study, the concept of contact has been formalised
to estimate the contacts that may have occurred during the
scheduled services provided by a road transport network and
to analyse how they vary according to different aspects. This
research is in line with works that propose artificial intel-
ligence [5] and big data [6] techniques for epidemiological
control. To the best of our knowledge, the research presented
in this paper is original in terms of the objectives pursued and
the methodology used. The methodology takes as its starting
point a formal framework based on epidemiological param-
eters, commonly used entities in the definition of transport
networks and the operations of a PRTS; it was implemented
using the data mining paradigm. In this methodology, the
initial source of data is the data generated in the transit
system, where the data provided by smart payment systems
based on contactless cards are of special relevance. These
potentially massive starting data are processed to obtain a
dataset, with a graph structure, which is used to estimate the
number of interactions that carry a risk of infection in the
public transportation system.

In addition to this first introductory section, this article is
organised into six sections. The second section presents a
review of related work. The third section presents the method-
ology used in the research; this methodology was applied
to a real use case of an intercity PRTS used by millions of
passengers annually. The results and a discussion thereof are
presented in the fourth and fifth section respectively. The
sixth section presents the limitations of this study. Finally,
in the seventh section, we present our conclusions.

Il. RELATED WORKS

This review of related studies has been developed in the
context of the epidemiology of respiratory infectious diseases
and is organised in two parts. The first part deals with studies
that aim to obtain information on the patterns of person-to-
person contacts that can lead to the transmission of this type
of disease and, based on these patterns, to model the dynamics
of disease transmission and/or design epidemiological con-
trol measures. In this part, two types of publications have
been reviewed: studies in which patterns are generated from
inferred contacts and those in which patterns are obtained
from sensor networks data. The second part reviews studies
on the role of public transport systems in the transmission of
this type of disease.

A. USE OF CONTACT PATTERNS IN THE EPIDEMIOLOGY
OF RESPIRATORY INFECTIOUS DISEASES

In the 1880s, Carl Fliigge observed that droplets expelled by
an infected person when talking, coughing or sneezing could
contain the pathogens that cause infectious diseases. Later,
Wells [7], in his research on tuberculosis, made the distinction
between ‘““large droplet” and ‘““small droplet”. According to
Wells, large droplets are deposited in the immediate vicinity
of the infected person before they evaporate, in contrast to
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small droplets, which evaporate before they are deposited,
forming residual particulates from the dried material, called
aerosols or droplet nuclei. Building on this contribution,
it was considered useful to collect data reflecting human-
to-human contacts, as these data provide patterns of disease
spread and enable effective disease control measures to be
implemented [8], [9], [10]. Specifically, when studying the
dynamics of disease spread, the social contact hypothesis is
used. This assumes that the number of potentially infectious
contacts between people is proportional to the number of
social contacts, with this proportionality factor being an indi-
cator of the infectivity of the disease [11]. A mathematical
model used in these studies [12] uses the next-generation
matrix (N) to estimate how many people in different age
groups will become infected as a result of contact with an
infected person in a given group. This matrix is of such
relevance that a considerable number of studies have been
carried out to obtain it using different methodologies.

1) STUDIES BASED ON INFERRED CONTACT NETWORKS
Modelling infectious interactions between people in large
populations is a scientific challenge of interest. To do this,
network theory is used, representing the interactions in a
network called a contact network. As such, techniques that
attempt to synthesise these networks have been developed.
These techniques can be classified into two types: those
that generate the interaction network using real or simulated
egocentric data, and those that generate the network from
the simulated behaviour of individuals. In works based on
egocentric data, these data are provided by people (egos)
whose identity is known and refer to interactions they have
had with other people (alters) whose identity is unknown, but
some data are provided, such as their approximate age, for
example. The result is a set of interaction networks with a star
topology, in which egos are connected to their alters, which
provides valuable information about the heterogeneity of the
contact network and the patterns of interactions between dif-
ferent population groups. Valuable information is provided by
this type of study, such as the patterns that these interactions
follow and the probability of interactions between different
alters from egocentric data [13].

Ferguson et al. [14] and Longini et al. [15] describe how
to estimate patterns of social contacts from census data,
assuming that they reflect the distribution of groups in the
population and household size. There is a comprehensive
set of studies inferring these patterns from data obtained
from surveys of the populations under study. The method-
ology used in these studies have often organised in three
stages. The first stage consists of a survey of selected indi-
viduals, in which they are asked to provide information on
their close contacts. The second stage consists of obtain-
ing a representation of the network of contacts between
different population groups, using a contact matrix (C).
Finally, the third step consists of analysing the dynamics of
the disease using the next-generation matrix (N), which is
obtained from the C matrix and available epidemiological

99151



IEEE Access

T. Cristobal et al.: Using Data Mining to Estimate Patterns of Contagion-Risk Interactions in an Intercity PRTS

data. Wallinga et al. [11] present a study on how to obtain
transmission parameters by age group from a social contact
survey on the conversational partners of the participants.
The survey was conducted by face-to-face interviews in
Utrecht, the Netherlands, in 1986, where 3084 were invited,
2106 completed a questionnaire and 1813 met the crite-
ria for further analysis. A survey-based study conducted in
the framework of the European POLYMOD project is pre-
sented in [16]. The study involved 7297 participants from 8
European countries. In [17] the BBC Pandemic project is
presented. This study was developed in the UK and reported
social contact information from 40177 participants who
completed the study, out of the 86 000 participants initially
recruited. Other studies using a similar methodology have
been carried out in France [18], Russia [19], Hong Kong [20],
Japan [21], Taiwan [22], Vietnam [23], in rural areas in
Kenya [24], in South Africa [25], Peru [26] and Senegal [27].
In the context of the COVID-19 pandemic, different studies
have been conducted on contact patterns in pre-pandemic and
pandemic periods in Luxemburg [28], China [29], UK [30],
Netherlands [31] and USA [32]. These studies show that as a
result of various measures to ensure social distancing, social
contacts are reduced by between 40% and 85%, depending
on the country. In [33] a study is carried out on the patterns
of social contacts in lockdown and post-confinement periods,
which are compared with patterns obtained in pre-pandemic
periods.

The generation of contact networks from simulated
population behaviour is another technique used in epidemi-
ology. Stochastic simulation based on agents that emulate
the behaviour of individuals in households and workplaces,
resulting in a network of interactions between potentially con-
tagious individuals, is used in [8] to study the effectiveness
of a mass vaccination campaign versus a targeted vaccina-
tion campaign to control the spread of smallpox disease in
structured communities of 2000 people. In [15], the same
simulation technique is used to study the effectiveness of
the use of antivirals, quarantines and vaccination against an
avian influenza pandemic in a population of 500 000 people
distributed over 5625 km? and structured according to the
2000 population census of Thailand. Agent-based stochastic
simulation is also used in [14] to evaluate the effective-
ness of using antivirals as a containment measure for an
early-stage avian influenza pandemic. The simulation emu-
lates the behaviour of a population of 85 million people
located in a 100 km? area in Thailand incorporating house-
holds, workplaces and schools. In [34] the same technique
is used to emulate the behaviour of the population in the
UK and the USA to analyse different epidemiological control
measures (household quarantines, perimeter confinements,
school and workplace closures, travel restrictions and clinical
treatments) in the context of an influenza pandemic. In [35],
an agent-based simulation is used to model the movements
of 1.5 million people in Portland, Oregon, USA, between
180000 different locations. The goal of the simulation was
to detect the presence of two people in the same place at the
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same instant in time, to generate a static network of contacts,
and to predict the number of contacts that occur at each
location. The researchers found that the network was highly
heterogeneous, in terms of the number of contacts, and had
properties analogous to ““‘small-world” networks. In order to
better predict outbreaks of SARS (Severe Acute Respiratory
Syndrome), Meyers et al. [36] obtained the contact network
of an urban population using different mathematical models
and through a stochastic simulation of the behaviour of the
people in the population, where contacts occur randomly,
in homes, schools, workplaces, hospitals and other public
places. The researchers drew on population data from the
city of Vancouver, British Columbia. Stochastic simulation
of the behaviour of individuals belonging to large popula-
tions was also used in [37]. The researchers found that the
dynamics of influenza epidemics modelled using the contact
network generated from the simulation was consistent with
epidemiological data from the 1957-1958 and 2009 influenza
pandemics.

2) STUDIES BASED ON CONTACT DATA COLLECTED VIA
SENSOR NETWORKS

Technological advances in mobile communications and sen-
sor networks have also been applied by researchers to
epidemiological monitoring. In this context, and more specif-
ically in the epidemiological monitoring of airborne dis-
eases, close contact is defined as two persons spending
a certain amount of time at a distance of less than a
given threshold. The following is a review of literature on
contact networks generated in different contexts of social
relationships, using different types of sensors. The method-
ologies followed by all these studies have the same objective,
which is to obtain data useful for modelling the dynamics of
infectious disease, using a compartmental SIR (Susceptible-
Infected-Recovered) model [38], or to evaluate the impact of
epidemiological control measures. These data are: frequency
of contacts, duration, location of contacts, contact network,
and contact matrices between different clusters of partici-
pants. Because they do not coincide with the aims of the
research presented in this article, we have not considered
studies on the tracing of contacts for epidemiological control
in health crisis situations.

Isella et al. [39], analysed contact data from a scien-
tific conference and a museum exhibition using RFID
technology. The number of contact records analysed was
10000 for a scientific conference and 230 000 for an exhibi-
tion. Cattuto et al. [40] presented a scalable, high-resolution
environment for the acquisition and analysis of person-to-
person contacts using RFID technology. Three use cases are
described in this work: an exhibition, in which 25 people
participated, resulting in 8700 contacts, and two scientific
conferences, in which 575 and 405 people participated in each
event, resulting in 17000 and 60 000 contacts, respectively.
Salathé et al. [41] proposed a mobile sensor network, based
on TelosB motes to obtain the network proximity interactions
(up to 3 metres) in a high school. During a month, 788 people
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participated in the study and 21489991 interactions were
recorded. Isella ef al. [42] presented a study conducted to
obtain the close contact network (up to 1.5 metres) between
patients, healthcare staff and caregivers in a hospital. In this
work, they used RFID technology, recording 16000 close
contacts for 7 days, in the peak period of the 2009 A/HIN1
influenza pandemic. Stehl€ at al. [43] presented a study to
obtain the close contact network (up to 1.5 metres) in a pri-
mary school. They used RFID technology and the participants
were 242 people. The number of close contacts recorded was
77 602 for two days. Around 500 students from the Technical
University of Denmark participated in a study [44], which
used Bluetooth technology to record the proximity between
them. The proximity records were used to analyse how the
proximity between people affects the spread of an infectious
disease, using a SIR model. Génois and Barrat [45] analysed
the properties of contact networks at different spatial res-
olutions, studying the differences between real face-to-face
contact networks and surrogate face-to-face contact networks
obtained from co-presence data.

In the context of the COVID-19 pandemic and in order to
monitor crowded environments, the use of thermal sensors
installed on Unmanned Aereal Vehicles (UAV) have been
proposed in [46] and [47]. A study of disease spread
is presented in [48], using a SEIR (Susceptible-Exposed-
Infectious-Recovered) model [49] in which people’s mobility
was obtained from disaggregated mobility data from mobile
phone services. The study was conducted in 10 of the largest
cities in the US, recording the movements of 98 million
people every hour from 1 March to 2 May 2020. A compre-
hensive review of the use of different technological advances
to mitigate the impact of this pandemic, including the use
of IoT, UAV and 5G for epidemiological control purposes,
is presented in [50].

B. STUDIES ON THE ROLE OF PUBLIC TRANSPORT IN THE
SPREAD OF RESPIRATORY INFECTIOUS DISEASES

Public transport systems are used daily by millions of people
all over the world. For this reason, epidemiological knowl-
edge regarding these systems is of interest, both from a
scientific perspective and from the point of view of epidemi-
ological control. The following studies focus on modelling
how the spread of respiratory infectious diseases occurs.
Merler and Ajelli [51] analysed the spread of a Europe-wide
influenza epidemic by modelling long-distance travel using
data from the European railway system and relating popu-
lation heterogeneity to the mobility of people in the spread
of the pandemic. A simulation tool for analysing the spread
of an influenza epidemic in New York City was presented
by Cooley [52]. This simulation was based on a compart-
mental SEIR influenza disease transmission dynamics model,
and drew on epidemiological parameters obtained from the
1957-1958 pandemic and simulated subway ridership for
a total of approximately 8 million passengers. A study on
the relationship between crowded environments in public
transport systems and the spread of airborne infections was
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presented by Goscé and Johansson [53]. The study used
epidemiological parameters of influenza-like illnesses and
mobility data from the London Underground obtained from
travel records generated by its passengers using an automatic
payment system based on a contactless card. Troko et al. [54]
examined whether the use of public transport is a risk factor
for acute respiratory infection. The authors used epidemi-
ological data obtained in the 2008-2009 influenza season
and related it to data on bus and tram usage using multiple
regression techniques.

Recently, in the context of the COVID-19 pandemic,
Luo et al. [55] described a contact-tracing study on an out-
break in Hunan Province, China, involving 10 passengers on
two public transport buses. A case of community transmis-
sion among bus passengers was reported by Shen er al. [56].
The authors suggested that this outbreak was due to poor vehi-
cle ventilation. A study on the risk of COVID-19 transmission
among passengers on a high-speed train system in China
was presented by Hu ef al. [57]. In this study, the authors
developed a model that quantifies the risk of transmission
on the basis of travel time and distance between passengers.
Severo et al. [58] analysed the role that the urban rail system
in the city of Lisbon played in the transmission of COVID-19
in said city. The authors used confirmed SARS-CoV-2 data in
this city for the period from 2 March to 5 July 2020 and,
using geographical data, linked the cases to the train stations
closest to the homes of the infected passengers. The authors
concluded that there is no relationship between proximity
to train stations and illness, suggesting that socioeconomic
factors affect infection dynamics.

lll. METHODOLOGY

The objective of this study is to acquire information on
the risk of infection on the routes operated in a PRTS. The
knowledge gained can be used to identify the routes with the
highest risk and to evaluate the impact of different measures
to minimise this risk. To achieve this objective, data are
required which, on many occasions, are not available and
therefore have to be estimated by processing a large volume
of data. For this reason, a data mining methodology was
used. The formal framework used in the methodology, and
then the methodology itself, which consists of two stages,
as illustrated in Fig. 1, are set out below.

This methodology differs significantly from the method-
ologies employed in the studies cited in the previous section
on related works. With regard to the studies that use surveys
to infer the network of contacts, this methodology makes it
possible to obtain a large number of samples without first
having to select the elements that form the sample to be anal-
ysed. Potentially, all passengers who use the public transport
system under consideration contribute with their trips to the
initial sample.

Compared to studies that infer the contact network by sim-
ulating the behaviour of the study population, this method-
ology uses data that reflect the real movements of people
and does not simulate these movements. This avoids the high
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FIGURE 1. Scheme of the processes and data of the two stages of the
methodology.

computational cost involved in such simulation techniques.
As for the studies that use sensors to determine the contacts
between people, the methodology presented herein estimates
these contacts without the need for any technological imple-
mentation, as it uses data taken from the transport operations.
Finally, in the specific context of public transport systems,
this methodology differs from the methodologies described
in the section on related works in terms of the objective
pursued.

The objective of the methodology is to estimate the risk of
infection among users of a public transport system based on
their travel behaviour. To do this, the challenge of estimating
data that are not known, but which are required to estimate
the infection risk, must be addressed. Moreover, as will be
seen, the methodology is complete and parametrisable, both
from the point of view of the public road transport system
and from the epidemiological point of view. To the best of our
knowledge, these features make it an original methodology.

A. FORMALIZATION

In the context of respiratory infectious diseases, in general
and at community level, a risk of infection is considered to
exist when an uninfected person has been in close contact
with an infected person. In the case of COVID-19, an unin-
fected person is considered to have been in close contact with
an infected person when, within a 24-hour interval, these two
persons have been within a distance of less than 2 metres
for at least 15 minutes. These 15 minutes may be a single
exposure or multiple exposures with a cumulative duration of
15 minutes or more [59]. In order to generalise the concept
of close contact, in this methodology it is determined by
three parameters: vy, v and v3. A close contact occurs when
an uninfected person has been with an infected person at a
distance of less than v, for a time equal to or greater than v,
in a period or time window of duration v3. The values of vy,
vy and v3 depend on the infectious disease in question. For
instance, in the case of COVID-19, distance v; is 2 metres,
cumulative time value v; is 15 minutes and time window v3 is
24 hours. Based on this definition, the objective of the study
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is not to estimate the number of close contacts in the PRTS,
since no personal passenger data are collected and therefore
it is not known whether or not the passenger is infected, but
to estimate the number of close interactions between passen-
gers. In the formal framework used, an interaction is defined
as the event in which two passengers physically remain in
the same public transport vehicle for a period of time, at a
distance of less than value v{. When one or more interactions
with a cumulative duration equal to or greater than v, occur
between two passengers in period of duration v3, then a close
interaction event occurs between them.

For the purposes of this research, the entities of interest
for the PRTS are: the transport network, the routes defined
in this network operated by public transport vehicles, and the
vehicle journeys made by these vehicles along these routes.
The transport network is represented as a directed graph
G = G(N,A), where N represents the set of nodes of the
network and each node of this set represents a point in the
transport network where passengers can board or alight from
the vehicles N = {n;}, where subscript i is the point identifier,
and A represents the set of simple arcs linking two nodes
A = {a;}, where subscript i is the arc identifier. The next
entity to be defined is the route. A route is defined as the
journey taken by vehicles carrying passengers. Considering
graph G, a route is defined as an ordered sequence of arcs
(ai, ..., a,), where a;, . ..,a, € A. The set of routes defined
in the transport network is represented by R = {r;}, where
subscript i is the route identifier. A segment of route r; is
defined as an ordered sequence of arcs (ap, ..., a,) along
route r;. The entity associated with the planning of operations
performed in the transport network is the vehicle journey. The
set of completed vehicle journeys is represented by J = {J;},
where J; is the set of journeys completed on the route identi-
fied by subscript i. Alternatively, the set of vehicle journeys,
irrespective of the route followed, that are completed in a time
period T is represented by the notation J7. The set of vehicle
journeys that consist of carrying passengers on route i during
time period 7 is represented by J; r. If instead of time period
T, we have moment of time 7, then J;; represents the set
of vehicle journeys on route i for which the start time is .
Finally, if v identifies a vehicle, then J; ; , represents a vehicle
journey on route i that begins at time 7 and is performed by
vehicle v. The trip taken by a passenger on vehicle journey
Ji 1,y is defined as the route segment (ap, .., a,) that the vehi-
cle has travelled while the passenger is on the vehicle. The
duration of the trip the passenger has made is the time elapsed
since the passenger boards the vehicle at origin node a,, of the
arc and alights at destination node a, of the arc.

At this point, the concept of an interaction event between
two passengers, p; and p;, on the PRTS used in the method-
ology can be formalised. Specifically, an interaction event is
said to occur if the following three conditions are met:

Condition 1. Both have travelled on the same vehicle
journey, ji.v-

Condition 2. The trips made by p; and p> on J;;,, have at
least one common arc.
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TABLE 1. Notation of the formal model used by the methodology.

Notation Meaning
n; Node on the transport network. Each node is asso-
ciated with a stop. Subscript ¢ is an integer value
that uniquely identifies the node
N Set of transport network nodes
a; Transport network arc. Each arc directly links two
nodes of set /V of the transport network
A Set of arcs on the transport network directly linking
two nodes
G(N, A) Directed graph representing the transport network
T Route on the transport network. Subscript ¢ is an

integer value that uniquely identifies the route

R Set of defined routes on the transport network

Ji Vehicle journey on route ;.

J Set of vehicle journeys on all defined routes on the
transport network

T Period of time

t Moment of time in period 7'

Jr Set of vehicle journeys that have been completed
in time period 7'
Jir Set of vehicle journeys on route ¢ that have been
completed in period 7'
Ji Set of vehicle journeys on route 4 that started at
moment ¢
v Public transport vehicle
Jit v Vehicle journey on route ¢ that started at moment ¢
carried out by vehicle v
Er Set of interaction events occurring on vehicle jour-
neys during period 7'
E;r Set of interaction events produced on vehicle jour-

neys on route ¢ in period 1’
Set of interaction events on vehicle v on route ¢ that
started at time ¢

Ev’,,t,v

Condition 3. Passengers p; and p> have been less than
v1 metres apart during the common arcs of the trips made by
p1and pp in Jit .

In addition, if during a time window of duration v3, the
cumulative duration of all interaction events is equal to or
greater than vy, then a close interaction event occurs. The
interaction events that occur on all routes of the transport
network during time period T are represented by Er. The
events that occur during time period 7 on route i are repre-
sented by E; 7. Therefore, Er = {E; r}. The set of interaction
events occurring on vehicle journey J;;,, is represented by
E;;,. Table 1 summarises the entities used in this formal
framework.

To study the interaction events between passengers in the
transport network, information is needed about the trip made
by each passenger: the origin and destination nodes, the date
and time of the start of the trip, and in the case of close
interactions, the distance of separation from other passengers
with whom he or she travelled during a vehicle journey. Most
PRTSs do not use pre-assigned seating, so it is not known how
far apart passengers were during the trip and in certain cases,
depending on the payment system used by the passenger, their
destination is not known either. Therefore, a challenge in this
research was how to estimate this unknown data.
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B. DATA PREPARATION STAGE

The objective of this stage is to generate the data records
representing the interaction events that may occur on each of
the routes of the PRTS during the selected study period 7. The
data structures and procedures are shown in Fig. 1. The main
source of the data is the Transport Data Base (TDB), which
contains all data relating to the definition of the transport
network, the planning of operations and the provision of
services. The Transport System Graph (TSG) is a graph
database that contains, firstly, all the entities mentioned in
the previous section, completed, consolidated and coher-
ent in the study period — fundamental aspects when han-
dling a large volume of data — to facilitate, secondly, the
process of estimating interactions that are meaningful and
persistent.

This stage comprises four processes. The first two pro-
cesses — final node estimation and selection, filtering and
loading — generate and complete the set of entities and
relationships to be represented in the TSG. The first —
final node estimation — estimates the destination node of
the trips made by the users when necessary and will be
explained in detail in Section III-B1. The second — selection,
filtering and loading — encompasses all the tasks related
to the generation and loading of the TSG from, on the one
hand, the records contained in the TDB relating to the trans-
port network, vehicles, users, cards, services and trips made,
and on the other, the destination stops as estimated by the
previous procedure, guaranteeing the reliability, accuracy,
completeness and consistency of all the data. The third —
seat identification — obtains, for each seat of each type of
bodywork in the fleet of vehicles, the set of seats that are
at a distance less than or equal to a parameter called the
safety distance, based on a two-dimensional representation
of the vehicle bodywork (location of seats). This safety dis-
tance may correspond both to the epidemiological parameter
v1 and to the distance threshold of the different seat alloca-
tion policies. Once the three processes described above have
been executed, the data necessary for the estimation of the
interaction events that take place in the vehicle journeys are
generated. This estimate is obtained by means of the fourth
process in this stage — interaction generation — which,
based on parameter v; and the seat allocation simulation,
which will be explained in Section III-B2, generates a record
of the total estimated interactions for each of the completed
vehicle journeys, composed of the fields shown in Table 2,
where field NI is the total number of interactions lasting
1 minute, NI, the total number lasting 2 minutes, and NI,,,
the total number of estimated interactions lasting longer in
the vehicle journey. As this is an estimation process that
under certain conditions performs a random allocation of
vacant seats, repeated execution of this process will generate
different sets of records, which are of interest in the modelling
phase.

Fig. 2 shows the interaction event records of the vehicle
journeys on two routes. The records represented in Fig. 2(a)
correspond to those of a 22-stop route with an estimated
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TABLE 2. Structure of records of estimated interactions on a vehicle
journey.

Vehicle Start
Journey Date NI; | NI2 | NIz | ... | NI»
ID time

Route
ID

1

Interactons
20 40 60 80 100

I I |

0

1 3 D, 7 9 1 13 15 17
minutes

(@)

Interactions

0 50 120 200 280 360
T

LI I I O O
1 8 5 7 9 11 13 15 17 19 21 28

minutes

(b)

FIGURE 2. Representation of interaction events on vehicle journeys along
two different routes: (a) correspond to those of a 22-stop route with an
estimated journey time of 18 minutes and (b) correspond to those of a
5-stop route with an estimated journey time of 23 minutes.

journey time of 18 minutes. The records represented in
Fig. 2(b) correspond to those of a 5-stop route with an esti-
mated journey time of 23 minutes. The horizontal axis repre-
sents the duration, in minutes, of the interaction events and the
vertical axis represents the estimated number of interaction
events. Each grey curve represents the estimated interaction
event records for a vehicle journey on the route. The red
vertical line identifies the boundary of the number of events
lasting 15 minutes or more, above which close interactions
are considered.

1) DESTINATION STOP ESTIMATION PROCESS

The objective of this process of the methodology is to solve
a problem that frequently arises in data mining projects.
This problem consists of handling data sets with missing
values. In a general context, this problem is addressed by
Dinh et al. [60] by proposing a novel method, called Clus-
tering Mixed Numerical and Categorical Data with Missing
Values (k-CMM), to classify datasets with a high number
of missing values. In the specific context of traffic accident
data analysis, this challenge has been addressed by Deb and
Liew [61], who proposed a method based on decision trees.
Considering previous works that address how to estimate the
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destination stop [62], [63], a procedure was developed to infer
the final destination of the trips made by passenger p — from
one of the two categories above — when this information has
not been recorded.

With the technologies commonly used by intercity road
transport services, it is possible to obtain information about
the trip made by passengers — at which node they started,
which vehicle they used and at which moment in time they
boarded the vehicle — but the end point and the duration of
their trip are not always recorded. This problem can be over-
come in the case of frequent travellers because they generally
use specific personal payment systems, such as contactless
cards, which automatically record payment transactions and
identify the user. There are several types of frequent users,
among which the most common are:

« Passengers that make multi-stage trips, such that the end
node of one stage (transfer node) is close to the start node
of the next stage.

« Passengers who make single-stage trips to their place of
work, study, public service or leisure and who also return
using the PRTS.

These types of trips exhibit a common pattern: on two consec-
utive trips made by the same passenger, the destination node
of the first is located within a short distance of the origin node
of the second. This proximity will be determined by a distance
threshold depending on the type of transport network, smaller
in the case of urban transport and larger in the case of intercity
transport. This procedure is based on the known data for two
consecutive trips made by p. For each trip made by p on
vehicle journey J;; ,, node n at which p started the trip and
time ¢’ of the beginning of the trip are known, where node n
is an origin node of one of the arcs forming the sequence of
arcs (ap, . . ., ag) that form the segment of route 7 travelled on
Jir.v-Moreover, ¢ < t’, meaning that the start of the user’s trip
¢’ is equal to or later than the start of vehicle journey ¢. The
purpose of the procedure is to ascertain the final stop of the
trip made by p on J;;, and, therefore, the sequence of arcs
that form the segment of route i travelled by p. To estimate
final stop ¢ of journey J;, 4 v, the procedure uses the known
data for the next trip made by p. If J;, , ,, is the next trip made
by p, then node n; and time ¢” at which he or she started the
journey are known. If nodes n; and ny, the starting nodes of
the two vehicle journeys, are not the same, and are not within
a distance threshold that determines that they are similar (on
both sides of a two-way road, at an intersection, or are close
consecutive nodes on the same route), then final stop g of the
trip made by p on J;, 1, », would be the stop on route i closest
to stop np at which p started the trip on J;, 4, ,v,, provided
that this final node ¢ is at a distance from 7, not greater than
the proximity threshold indicated above, that is, it is not too
far away. Once the final stop has been deduced, the time of
the trip made by p will be the sum of the time taken by v to
traverse the sequence of arcs (ay,, ..., dq,).

Fig. 3 illustrates this procedure. It represents, by means
of a graph, a generalisation of the procedure in the case of
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FIGURE 3. Procedure for estimating the destination stop of a trip.

two consecutive trips in time of passenger p, trip i and trip
i + 1. The orange arcs represent the route of the scheduled
service used by the passenger on trip i, and the node at
which the passenger starts this trip is highlighted. The blue
arcs represent the route of the scheduled service used by the
passenger on trip i + 1, and the node at which the passenger
starts this trip is highlighted.

The green node is the estimated end node of trip i (the
objective of the procedure). The nodes encircled by a dotted
line represent nodes considered similar due to their geograph-
ical proximity. The grey shaded area denotes the maximum
distance for determining nodes close to the start node of
trip i + 1. The algorithmic description of the procedure is
presented in Algorithm 1.

To validate the proposed method, it was applied to a set
of trips where the destination stop is known and the result of
the estimation for each trip was compared with the known
destination. The test dataset was obtained from the trans-
port system selected as a use case in Section IV, where the
results are presented. The data contained in this test dataset
correspond to the records generated from trips made using
a contactless card as a means of payment and a fare option
that requires the passenger to check in at the start of the trip
and to check out upon arrival at the destination, where the
destination stop is recorded. The number of trips in this test
dataset was 278 694. For this set of trips, the proposed method
estimated the destination stop in 205 183 cases (73.6 %) and
failed to do so for 73 511 trips (26.3%).

Table 3 presents the numbers of trips for which the destina-
tion stop was estimated as a function of the Euclidean distance
between the estimated stop and the known stop. The first
column shows the distance between the estimated stop and
the known stop (D). The second column shows the number
of trips (NT) in which the destination stop was estimated as a
function of the value of D, and the percentage of these trips in
relation to the total number of trips in which the destination
stop could be estimated.

In the parameterisation of the destination stop estimation
algorithm, the value used for the DSmax parameter — which
represents the distance threshold for considering two stops
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Algorithm 1 Estimating the Destination of a Trip

Input data:

- Vehicle journey J;, 1, v, taken by passenger p
- Node n; at which p started journey J;, 4 v,
- Time ¢’ at which p started journey J;, 1, .,
- Next vehicle journey Jj, 1,.v, made by the passenger
- Node n; at which p started journey J;, 1, v,
- Maximum distance DPmax at which two nodes are con-
sidered to be close
- Maximum distance DSmax at which two nodes are con-
sidered to be similar
Goal:
- Node ¢, estimated destination of p on vehicle journey
Jis,tim
if Euclidean distance between n; and np > DSmax then
Obtain sequence of arcs of route i; starting at node ;.
Output data for this step: sequence of arcs (ay, , . . . , aq1)
that form the largest possible segment of route i; trav-
elled by p
for each route arc of the sequence (ay,, .. ., aq,) do
Obtain the Euclidean distance between the destination
node of the route arc and node ny. Output data for this
step: sequence of distances dan, e, d”cu
end for
Obtain the minimum value dmin of the sequence
a’a,ll yeea,dg a“ and arc g, in which this value has been
obtained. Output data for this step: destination node g of
arc aj,
if (dmin < DPmax) and (Euclidean distance between
n; and ¢ > DSmax) then
The estimated destination stop of p on journey J;, 4 v,
is the final stop of arc a;,
else
The destination stop cannot be determined. There is
no near stop to the starting stop of the next journey,
or it is similar to the starting stop of the previous
journey
end if
else
The destination stop cannot be determined. The starting
stops are the same or similar
end if

to be similar — was 500 metres; the value of the DPmax
parameter — which indicates when two stops are close to
each other — was 1 km. Considering that in the case of inter-
city transport, stops are spaced along the length of a route,
these distance thresholds are reasonable and conservative.
As can be seen in Table 3, for all trips for which the
destination stop was estimated, in 71.6% the estimated des-
tination stop was less than 1 km from the actual destina-
tion stop. Considering the results of this validation test, this
parameterisation of the DSmax and DPmax values makes it
possible to obtain an estimate of the destination stop for a
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TABLE 3. Numbers of trips for which the destination stop was estimated.
The first column shows the distance between the estimated stop and the
actual stop (D). The second column shows the number of trips (NT) for

which the destination stop was estimated as a function of the value of D.

D (km) NT

98926 (48.21%)
20630 (10.05%)
21939 (10.69%)
5452 (2.65%)
12114 (5.90%)
6373 (3.10%)
9967 (4.85%)
3733 (1.81%)
26049 (12.69%)

1 =]
IANA

[e=]
INSISISISTARSASES

No@
—_ o
S

o
=W N =g
SUAIANIAIA &

SAAAADAN
T W N

Y B
”@ﬁ"r”w

[ | LA AN

FIGURE 4. Representation of the passenger areas of a vehicle.

significant proportion of the trips for which this information
is not available.

2) SIMULATION OF SEAT ASSIGNMENT ON A VEHICLE
JOURNEY

In intercity PRTSs that are not long distance, it is not always
possible to know the distance between passengers during a
vehicle journey, since passengers are not assigned a seat when
they travel and, therefore, when passengers board the vehicle,
they can occupy the vacant seat of their choice. To address
this challenge, it is assumed that all passengers are seated in
one of the available vacant seats (when the vehicle capacity
is exceeded, the process rules out new passengers until a seat
becomes available) and that they remain in the same seat
during their journey, and simulates the choice of seat based
on various assumptions about passenger behaviour. The way
the procedure is implemented is shown below.

In the methodology, the distance between two passengers
travelling in a vehicle is defined as the distance between
the centre points of the seats they occupy. In order to sys-
tematise the process of obtaining the seat centre points and
thus automatically obtain the distances between seats, a two-
dimensional representation model of the vehicle space for
passengers has been developed that takes into account the
wide variety of bodywork types used in intercity PRTSs.
Fig. 4 shows a representation of the passenger zones of one of
the vehicle types considered in this study in two of the vehicle
types considered in this study. A reference system to obtain
the coordinates of the centre of each seat is also shown in red
in this figure.
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In this research, two alternative seat allocation policies
were considered. The first is the Empirical Policy (EP). This
policy is based on observed behaviour whereby a passenger
prefers not to sit next to another passenger, without any other
consideration. The second policy aims to reduce the risk of
infection and is called the Minimise Risk Policy (MRP).
It consists of assigning the user to the free seat that is more
than 2m away from the largest number of passengers, in order
to avoid as many interactions as possible with passengers
on board the vehicle when boarding. In both policies, if the
occupancy of the vehicle does not permit strict application of
the allocation criterion, then a seat is randomly allocated from
the vacant seats that are in the best circumstances according
to the allocation policy used.

The allocation procedure is based on three parameters the
values of which vary according to the allocation policy. The
first parameter is the safety distance, which is determined by
the allocation strategy. The second parameter is the affected
seats list, which is a list associated with each seat of each
type of bodywork in the vehicle fleet that contains the list of
seats that are affected by its occupancy, and which is directly
dependent on the value of the safety distance parameter. The
third parameter is the risk potential, which is a value assigned
to each of the vacant seats in the vehicle during the course of
a vehicle journey and which determines its potential risk: it
increases as the seats in which it appears in the affected seats
list are occupied and decreases when any of these seats are
vacated.

The procedure simulates seat occupancy by passengers on
each vehicle journey J;; ,, taking as input parameters the
affected seats list pertaining to the vehicle bodywork type,
and the safety distance of the policy to be applied and the
origin and destination stops of each of the trips made by the
passengers on that vehicle journey. Following the route order
established for that vehicle journey, each stop is treated by
the procedure in the following way: first, it vacates the seat
of the passengers arriving at their destination and assigns
it the corresponding risk potential according to the occu-
pancy of the affected seats, lowering the risk potential of the
seats that are vacant in the list of affected seats, and then
it allocates the passengers starting their trip a seat with the
lowest risk potential among those that are randomly vacant,
increasing the risk potential of the vacant affected seats. The
algorithmic description of the seating procedure is described
in Algorithm 2.

C. MODELING STAGE

In general, in a data mining project, the modelling phase
is designed to generate new knowledge, applying tech-
niques of varying nature — both statistical and machine
learning — depending on the type of problem posed. As has
already been noted, the objective of the methodology is to
obtain information by detecting the patterns followed by
interaction events between passengers on the different routes
of the PRTS over a given period of time. To obtain these
patterns, a clustering process was implemented (see Fig. 1),
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Algorithm 2 Assignment of Seats in a Vehicle During a
Vehicle Journey

Input data:

- Safety distance. In the case of EP, this is the minimum
distance between the centres of two adjacent seats, and
in the case of MRP, it is 2 metres.

- Affected seats list. This is a list for each seat in each
bodywork type in the fleet, showing the number of
seats that are affected by occupancy of the seat. This
list depends directly on the value of the safety distance
parameter as determined by the allocation policy used.

Goal:

- Potential risk of a seat. This is a value that is assigned to
each of the free seats in the vehicle during the course
of a vehicle journey. The value increases as the seats
that appear in the affected seats list are occupied and
decreases when any of these seats are vacated.

When a vehicle journey, J; ; ,, begins, the initial risk poten-

tial value is assigned to all the seats in the vehicle. This

initial value is the minimum, as it is assumed that there are
no passengers in the vehicle.

At each stop the vehicle makes during the vehicle journey:

for each user that alights from the vehicle do
Their seat ap is vacated and the minimum risk potential
value is assigned.
for each seat in its affected seats list do
if the seat is occupied then
The risk potential of the newly vacated seat ap
increases.
end if
end for
for each user boarding the vehicle do
They are randomly assigned one of the seats with the
lowest risk potential on the vehicle.
for each seat af in its affected seats list do
if the seat af is free then
The risk potential of seat af increases.
end if
end for
end for
end for

which takes into account certain parameters and is based on
the estimation of these events made by the interaction gen-
eration process. In schematic terms, it performs three tasks:
generation of the different sets of input data for the modelling,
modelling of each of these sets and, finally, creation of reports
with the results.

1) GENERATION OF THE DATASET TO BE MODELED

This task is conditioned by different parameters. Notewor-
thy among the parameters that determine the spatial and
temporal limits of the scope of the study is that related
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to the discretisation of the duration of the interactions: the
data records of the estimated interactions have a temporal
granularity of 1 minute, but the analysis can be carried out
with a greater granularity — 5 minutes, 10 minutes, and
so on — depending on the type of routes or the ultimate
objective of the study.

Therefore, the interaction events on vehicle journey J; ;,
that is, each field of record E; ;, are accumulated in intervals
of k minutes, giving rise to an array of n integer values,
E; :[n]. A second relevant parameter is that which determines
the number of generations of estimated interactions to be
considered at this stage. If there are more than one, the final
array E,-, +[n] will be calculated as the arithmetic mean of the
records created for each vehicle, that is, if G is the number of
generations to be processed and l:?g,,[n] corresponds to the
estimated events in generation g, then the final interaction
record will be:

Y5 Egialn]
G

Finally, if in period T there have been N vehicle journeys,
at moments of time 11, 3, . . ., fyy of vehicle journeys on route
i, then the overall representation of the interaction events of
that route in that period, E; 7, is obtained from the expression:

>t B, In)
N
That is, it is obtained by dividing the estimated number of

interactions in all vehicle journeys by the number of com-
pleted journeys.

Ei[n] = 4))

E;r[n] = )

2) MODELING

The objective of this stage of the methodology is to obtain
information to assess the risk of infection on the different
routes of the transport network, based on the interaction event
records E; 7 described above. From the definition of the data
record E; 7[n] expressed in (2), epidemiological information
of interest can be extracted for each route for period 7. Specif-
ically, ME; 7 which is the estimated number of interaction
events on route i will be determined by (3), where n is the
number of elements in the record. The maximum value of
E; 7[n] reflects the most likely interaction event duration. For
close interaction events, which as mentioned above depend
on epidemiological parameter v», if k is the duration of the
interval used to define the E;r records, then index w of
the E; 7 record to which close interaction events correspond
is obtained by (4). For example, for COVID-19, this index
would have a value of 4, since the value of v; for this disease
is 15 minutes and k is 5 minutes. CE; r, that is, the average
number for vehicle journeys on route i, will be determined

by (5).

ME;r = ZEi,T[i] 3)
i=1
w = INT(»n/k) + 1 “4)
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The technique chosen to obtain patterns for the interaction
events was the clustering of similar objects, for which the
specific algorithm and the metric used to validate the results
can also be parameterised. Since there may be a considerable
disparity of routes in a transport network, conditioned both by
type and duration, it is also possible to parameterise a prior
classification of the routes into R sets, for example by the
planned duration of the vehicle journeys, in order to minimise
the distortion of the distances in this clustering procedure.
This classification yields different Eg r sets that will be the
input data for each clustering process.

Another important parameter of this modelling phase is
the total number of clusters to be generated in each Eg r
set. The main consequence of this parameterisation process
is that the number of clusters will probably not be optimal for
all cases, but it is necessary since one of the main objectives
of this study is to compare the interactions resulting from the
application of different seat allocation strategies.

Once each Eg 7 dataset and the number of clusters to be
generated have been determined, the chosen algorithm will
be run, resulting in different clusters where the elements E; 7
that are part of the cluster are similar, and where the centroid
of each cluster represents the elements that are part of the
cluster. In the methodology, the interaction event record for
the centroid of each cluster obtained is represented by Cr 7/,
where subscript / is the cluster identifier.

3) ANALYSIS OF RESULTS: GENERATION OF KNOWLEDGE
Once the clustering and evaluation procedures have been
carried out for each set of interaction data, determined by the
prior classification of the routes and by the seat allocation
policy, we proceed to the analysis of the results, which may
vary in nature. First, there are the centroids of each of the
clusters, for which the record Cg 7 ; is formed by the average
number of interactions for each of the defined intervals of
duration, determined by parameter k. Each centroid, together
with the routes similar to it, provide relevant information on
the average interactions of different durations. More specif-
ically, by applying (3)-(5) with the data records of each
centroid, information becomes available for all the routes
belonging to the same cluster.

IV. RESULTS

The proposed methodology was applied to the intercity PRTS
on the island of Gran Canaria (Canary Islands, Spain). This
transport system is operated by the company Global Salcai-
Utinsa, which annually transports around 20 million pas-
sengers and covers 25 million kilometres. The time period
studied was the month of December 2019, two months before
the COVID-19 pandemic was declared. The decision to select
this month was made because in this period demand was
not affected by the travel restrictions imposed by the health
authorities as a result of the state of emergency.
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TABLE 4. Some entities and instances of each uploaded to the TSG.

Entity Meaning Number of
instances

N Set of transport network nodes 2586

A Set of arcs on the transport network di- 6155
rectly linking two nodes

Jr  Set of vehicle journeys that have been 70734
completed in time period 7'

v Public transport vehicle 443

TABLE 5. Duration and total number of routes in each category.

Route group Duration d (min) Number of routes

R: d <25 109
R2 25 <d< 34 107
R3 34<d<47 106
Ry d> 47 118

A relational database was used to implement the method-
ology, with the relevant data required for this study from
the operator’s transport database, Neo4j, to implement
the graph database used by the methodology, and the
RStudio development environment [64] for programming
the procedures used in the data preparation and modelling
stages.

In the study period, 440 different routes were identified
on the transport network, with a total of 70734 vehicle
journeys made. The number of passenger trips made in this
period was 2260 744. Of these trips, 1 101 338 recorded the
origin stop and the destination stop, and 1159406 did not,
so the process of estimating the destination stop described
in Section III-B1 was applied to this set of trips. As a result
of this process, an estimation of the destination stop could
be completed on 860909 trips; this was not possible on
298 497 trips. Finally, the process of selection and filtering
of records resulted in a total of 1797 107 trips being loaded
into the TSG, and these were used to estimate passenger
interactions according to the two seat assignment policies
described in Section III-B2. Table 4 illustrates these data by
associating them with the entities defined in the formalisation
described in Section III-A.

Once a complete set of transport activity data was obtained
and represented in the TSG, the remaining processes of
the methodology were implemented by adopting a series
of decisions based on aspects related to the transport net-
work, epidemiological aspects and the modelling technique
used.

In relation to the transport network, firstly, the routes were
classified depending on the time taken to complete them,
generating four subsets, four categories of routes Ry, Ro,
R3 and R4 with the following characteristics: subset Ry con-
tains routes which take less than 25 minutes to complete,
R» routes which take more than or equal to 25 minutes and
less than 35 minutes, R3 routes which take between 35 and
47 minutes, and R4 routes which take more than or equal to
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TABLE 6. Total number of routes in each category.

Area  Number of routes

N 148
S 201
C 43
M 48

47 minutes to complete. The maximum duration of a route in
the transport network is 137 minutes.

The duration and number of routes in each group is shown
in Table 5. Thus, the number of interaction event duration
intervals is the same for all routes belonging to the same
subset. Secondly, and also related to the routes, these have
been subdivided into four groups, according to the geograph-
ical area through which they pass: N for the routes that run
through the north, S for those that run between the capital,
the east and the south, C for those that run between the capital
and the central area, and M for the routes that, without passing
through the capital, run between the south, the north and the
centre.

The reason for this decision is to analyse the patterns
of interaction events according to the geographical areas
through which the route services pass. The total number of
routes in each area is shown in Table 6.

As for other parameters, epidemiological parameter v| was
set to 2 metres, vo to 15 minutes, the safety distance of
the EP policy to 0.5 metres, and that of the MRP policy to
2 metres, and the duration of interactions was discretised into
k intervals of 5 minutes. For each policy, 3 generations of data
were estimated.

Lastly, a clustering modelling technique was chosen to
identify the possible interaction profiles. The specific tech-
nique used was the k-means algorithm, a widely used
unsupervised algorithm that appears to give partitions which
are reasonably efficient in the sense of within-class vari-
ance, is easily programmed and is computationally economi-
cal [65]. The process subdivides the n input data records into
k partitions where each is associated with the partition nearest
to its mean, where the mean of each partition is its significant
element and its centroid, the profile that characterises it.
To evaluate the quality of the clusters that were obtained the
silhouette was used [66]. This value measures the degree of
cohesion of the elements that make up the cluster, so that
the greater the cohesion of a cluster, the closer its centroid
will be to each element of the set, and therefore the more
representative it will be. It takes values in the interval [—1, 1],
so that the value —1 indicates a cluster with the lowest degree
of cohesion and the value 1 indicates a cluster with the highest
degree of cohesion. For the sake of clarity in presentation,
the number of clusters for all datasets is set to 3. Having
described how the methodology was implemented, the results
are presented below. Figs. 5-8 show the clusters Cj, Cy,
Cs obtained with the data generated by applying the EP
(Figs. 5(a)-8(a)) and MRP (Figs. 5(b)-8(b)) seat allocation
policy in each of the four defined route categories.
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FIGURE 5. Plots of clusters and centroids obtained by applying (a) policy
EP and (b) policy MRP to group of routes R;. In these plots, the centroids
of clusters C;, C, and C5 are represented by green, blue and red curves
respectively.

The same criterion of presentation has been used in all
of them: each column represents the three clusters obtained
for each policy, ordered by the number of routes they con-
tain. In each cluster, the curve representing the centroid
obtained by applying the k-means algorithm is drawn. In the
k-means algorithm, the centroid of a cluster represents its
most significant value and corresponds to the mean value
of the elements that form the cluster. The cluster with the
green centroid is the most numerous, the cluster with the
blue centroid is the second most numerous, and the cluster
with the red centroid is the least numerous. In all the graphs,
the horizontal axis represents the discretised duration of the
average number of interactions per vehicle journey. The red
vertical line identifies the boundary of the mean number
of events lasting 15 minutes or more, above which close
interactions are considered. In addition, the legend of each of
the graphs includes four values that are considered significant
for analysis purposes: the total number of routes belonging
to the cluster (size), the value of its silhouette (sil), which
quantifies the coherence of the cluster, the maximum value of
average interactions of the profile obtained (max), and finally,
the sum of its average interactions with a duration greater than
or equal to 15 minutes, which may be considered a metric for
quantifying the total number of close interactions (CI) that
may occur in each cluster.

The plots in Fig. 5(a) show the results of the data clustering
procedure for the Ry set of routes (routes which take less than
25 minutes to complete), when interactions were estimated
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FIGURE 6. Plots of clusters and centroids obtained by applying (a) policy
EP and (b) policy MRP to group of routes R,. In these plots, the centroids
of clusters C;, C, and C; are represented by green, blue and red curves
respectively.

by applying the EP seat allocation policy. Of the total in this
category, the estimation process resulted in some interaction
on 87 routes, representing 80% of the routes. In the remaining
20%, no interaction record was generated in the three simu-
lations performed, as these were routes with a low number of
vehicle journeys and passengers. As mentioned above, the
three clusters generated are presented in order of size from
largest to smallest. In this case, cluster C; contains approxi-
mately 88% of the routes and is quite cohesive, with the high-
est silhouette value of the three. As for the curve representing
its centroid, with the values (3.01 3.75 2.79 1.31 0.43), it can
be observed that it is nearly a horizontal line, reaches its
maximum value of 3.75 when the relative interactions per
vehicle journey have a duration of 10 minutes and, when
only narrow interactions are considered, it is characterised
by the value 4.53, corresponding to the total number of inter-
actions with a duration greater than or equal to 15 minutes.
Cluster C, contains routes on which interactions exhibit dis-
parate behaviour — its silhouette value is very low — unlike
cluster C3 which, with only two routes, contains those with
the highest number of close interactions in the set, a total of
128 per vehicle journey.

The plots in Fig. 5(b) represent the results when the MRP
seat assignment policy is applied to the same set of routes,
and significant differences are observed with respect to the
EP policy. The first is that the number of routes with esti-
mated interactions decreases from 80% to 67%, that is, out
of 109 routes in the set, records are generated in 74 routes.
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FIGURE 7. Plots of clusters and centroids obtained by applying (a) policy
EP and (b) policy MRP to group of routes Rs. In these plots, the centroids
of clusters C;, C, and C5 are represented by green, blue and red curves
respectively.

The second is that the maximum centroid values decrease
by 22% in Cj, the largest cluster, and by about 12% in
C, and Cj3 respectively. And the third, closely related to the
preceding observation, is that the values characterising the
centroids also decrease in Cy, C, and Cs, by 20%, 24% and
slightly more than 16% respectively. Again, cluster C; has the
highest coherence and C; contains the most disparate route
profiles.

Plots (a) and (b) in Fig. 6 show the results of clustering
the R, category data (routes which take more than or equal to
25 minutes and less than 35 minutes) using the two defined
policies. In this case, there is hardly any reduction in the
total number of routes affected by interactions, but there is a
significant reduction in the estimated close interactions per
vehicle journey in the results in (b) compared to those in
(a), which is around 47% in the largest cluster Cy, 33% in
cluster Cy and 11% in cluster Cs.

The results for set Rz (routes which take between 35 and
47 minutes), with 106 routes, are shown in Fig. 7. In this case,
between 3 and 5 routes have no estimated interactions, and in
cluster C; a 31% reduction in interactions is observed when
the MRP seat assignment policy is applied. In clusters C, and
C; there is a regrouping of routes, all of them with a rather
low coherence.

Finally, the results for the 118 routes in the last set R4
(routes which take more than or equal to 47 minutes to
complete), which contains the routes with the longest journey
times of more than 47 minutes, are presented in Fig. 8.
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TABLE 7. Total number of routes in each area and group without (w/0)
and with estimated interactions in each policy.

Area
N S C M
Route w/o with w/o with w/o with w/o with
R1 2 40 10 37 9 4 1 6
EP Ro 45 1 43 9 9
R3 36 3 38 11 18
Ry 25 69 10 14
Ry 9 33 14 33 9 4 3 4
Ro 1 44 1 43 9 9
MRP R3 2 34 4 37 11 18
Ry 25 69 10 1 13

Except for one, all of them give rise to some interaction in
the different simulations, and when comparing the results
obtained by the two seat allocation policies, again in the
most conservative — the MRP policy — there is a significant
reduction in the number of interactions compared to the EP,
which is around 34% in the first cluster, containing about 60%
of the routes in this set, 21% in the second cluster and 23%
in the third cluster.

Tables 7 and 8 show these results for the different geo-
graphical areas into which the transport network was subdi-
vided, also distinguishing between the two policies applied.
As a first approximation, Table 7 shows the total number of
routes in each area and each group for which interactions
were not estimated and for which interactions were estimated,
depending on the policy applied. It can be seen that there
is no significant decrease in the number of routes on which
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TABLE 8. Distribution of the routes of each group in each area and each
cluster.

Area
N S C M
Route C; Co C3 C; C2 C3 C; Co2 C3 C; Co Cs
Ry 40 287 2 3 1 6
EP Ro 38 7 20 18 5 6 3 6 3
R3 35 1 27 8 3 11 18
R4 20 5 26 38 5 10 14
Ry 33 25 6 2 3 1 4
Ro 36 8 20 19 4 6 3 6 3
MRP R3 33 1 26 5 6 11 18
R4 20 5 26 38 5 10 13

interactions are not estimated when the more conservative
seat allocation policy is applied, with the exception of the
R route category in the northern part of the transport net-
work, where the number of routes with interactions decreases
by just over 17%, from 40 to 33.

Table 8, by contrast, shows the distribution of the routes in
each of the geographical areas and each category in the clus-
ters obtained. Although no substantial decreases are observed
when applying the different policies, it does reflect data con-
cerning the type of route in each area of the transport network,
such as, for example, the fact that almost half of the routes in
the south zone have a profile with a high number of close
interactions.

V. DISCUSSION

The estimated interactions, as presented in this paper, provide
new knowledge in two ways: on the one hand, about the
interactions that may be occurring in the transport network,
and on the other hand, the extent to which these are affected
by applying different seating policies. This provides a way
of measuring the effect of implementing rules or procedures
to determine passenger locations in order to reduce contact
between people. It should be noted that the results refer to
estimated interactions over the entire study period, without
distinguishing between different types of day (e.g. working
or non-working) or between different time bands, which
is a higher level of detail and is covered by the proposed
methodology.

The EP policy, where a passenger prefers to sit in a seat
where the surrounding seats are unoccupied, determines the
minimum threshold of interactions in systems where no seat
allocation is applied, as it does not take into account people
travelling together or the preferences of certain age groups.
For this reason, the results obtained by applying this policy
can be considered a measure of the interactions that, at the
very least, are occurring in the vehicle journeys, both at
network level and at the level of individual routes. From the
results obtained with the records of the three simulations
carried out with this policy, it can be seen that in Table 7,
of the 440 routes of the transport network, in 26 no interaction
is estimated, which represents 6%, and it is area C which has
the highest proportion of routes with no interactions, more
than 25%. In general, these are routes with a low number of
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TABLE 9. Averages obtained by applying the two policies in cluster C;.

Size Close Interactions (CI)
EP MRP reduction EP MRP  reduction
R, 77 65 15% 4.53 3.7 18.3%
Ry 70 68 2.8% 10.31 5.4 47.6%
Rs 91 88 3.2% 24.5 16.72 31.75%
Ry 70 69 1.4% 2529 16.71 33.92%

passengers and vehicle journeys, and almost all of them have
short routes, with journeys of less than 25 minutes.

In Table 8, of the 414 routes with estimated interactions,
firstly, area N stands out, with a generally low interaction
profile, since more than 90% of its routes are grouped in Cj.
Secondly, area S, where the routes with the longest duration,
those included in R3 and Ry, have a greater weight and where
the profiles with the highest number of close interactions are
also found; more than 80% of the total number of routes
grouped in C; and Cj3 are in this area. Finally, areas C and M,
with a smaller number of routes, of medium-long duration
and which, for the most part, are grouped in the clusters with
the lowest interaction. As for the routes in the clusters with the
longest interactions, for example, those found in area C3 of all
the groups of routes, different types of routes can be observed,
some with less than 20 vehicle journeys in the month of the
study and others with more than 1000 vehicle journeys. To be
able to draw conclusions in these cases, it would be necessary
to apply greater temporal granularity to the records for the
period of study (at the level of days of the week and/or time
bands) in order to identify the possible causes.

As for the effects of applying a more conservative seat
allocation policy, in order to minimise interactions between
passengers, this methodology proposes a way of quantifying
it, based on two metrics associated with the clusters that are
generated: the total number of routes grouped in each cluster
(size) and the average number of estimated close interactions
(CD). As an example, and by way of summary, Table 9 shows
those obtained in cluster C;, the most numerous cluster as it
contains 75% of the affected routes, where it can be seen that,
while the number of affected routes decreases significantly
only in the shorter routes, the reduction in the number of close
interactions is significant in all types of routes, especially
among those with a duration of between 25 and 34 minutes.

VI. LIMITATIONS OF THE STUDY

This section describes the limitations of this study. The first
is that it assumes that there is a risk of infection between two
people when they are in close contact, and does not consider
the risk of transmission by aerosol or fomite. Therefore, the
methodology used could only be applied in the case of dis-
eases where the main mode of transmission is close contact,
as is the case with COVID-19 [67]. A second limitation is that
it is applied in intercity road transport systems and assumes
that all passengers are seated. For this type of transport sys-
tem, this assumption is not a serious limitation, since standing
is usually not permitted for safety reasons. The methodology
followed would not, however, be applicable to the case of
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urban public road transport, where standing is permitted and
is common. In the context of a pandemic, it is common to
limit vehicle occupancy in this type of transport using criteria
that are not based on objective parameters. The proposed
methodology could therefore be applied to obtain information
that would facilitate the planning of transport services with
the aim of reducing the risk of infection based on a calculation
of capacity using objective parameters, as opposed to simply
reducing capacity by an arbitrary amount. Another limitation
is that it is assumed that there is a risk of infection in vehicles
when two passengers are on the same vehicle at the same
time. Therefore, the presence of two passengers at the same
stop on the transport network has not been considered. In the
case of intercity public road transport, this limitation is of
relative importance for two reasons. The first reason is that
this type of transport is planned around timetables, which
means that passengers arrive at a stop a few minutes before
catching the vehicle in which they will be travelling, and
it is not common for them to spend long periods of time
at the stops. The second is that most of the stops on this
type of transport system are located outdoors, thus reducing
the risk of infection. The final limitation is that since the
passenger’s seat in the vehicle is not known, the location of
the passenger was simulated based on a seating allocation
policy. The importance of this limitation is also relative, since
the objective of the study was to learn on which routes and
at what times the risk of infection is greatest. In this study,
the policy applied was an EP policy, the aim of which is
to approximate the passenger’s seating behaviour. In reality,
close interactions are likely to be greater, as the possibility
that passengers may be travelling together is not taken into
account. However, for the purposes intended, this limita-
tion does not invalidate the information obtained. Moreover,
by simulating the location of passengers in vehicles, it is
possible to assess the impact of different seating strategies
designed to minimise the risk of infection and maximise the
available vehicle capacity.

VIl. CONCLUSION

This article presents the results of a research project designed
to gather information about the risk of infection on the routes
of an intercity road transport system. This information can
be used to identify the routes with the highest risk and to
assess the impact of different measures to minimise this risk.
To achieve this objective, a data mining methodology was
used. The results were obtained by analysing a real case of
a transport system where the data from an intercity transport
operator on the island of Gran Canaria was analysed for the
month of December 2019.

The results provide new insights into the interactions that
occur between passengers in a public transport network,
useful both for epidemiological control by health authorities
and for the transport operator when implementing effective
measures to reduce the risk of infection. Specifically, the
effects of two seat allocation policies were analysed. The first
of these policies is an approximation of the usual behaviour
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of passengers when choosing their seat in the vehicle, and
the second is a strategy that aims to minimise the risk of
infection. The methodology used to obtain these results was
parameterised in accordance with epidemiological aspects
and entities related to transport activity. To be precise, the def-
inition of close contact for COVID-19 was used, together with
the duration of the routes analysed and the geographical area
in which they operate. Given the fact that the parameters of
the methodology can be adapted, it could be applied to other
diseases and use other transport-related aspects, such as the
type of route, time bands, periods of time, etc. This is made by
possible by the fact that the initial transport activity data can
be used to generate a coherent and robust data set structured
in the form of a graph. In order to obtain information about the
interactions that occur on the transport system, the k-means
classification technique was used to extract information from
the resulting clusters and their centroids.
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