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ABSTRACT The COVID-19 pandemic has had very negative effects on public transport systems. These
effects have compromised the role they should play as enablers of social equity and environmentally
sustainable mobility and have caused serious economic losses for public transport operators. For this reason,
in the context of pandemics, meaningful epidemiological information gathered in the specific framework
of these systems is of great interest. This article presents the findings of an investigation into the risk of
transmission of a respiratory infectious disease in an intercity road transport system that carries millions of
passengers annually. To achieve this objective, a data mining methodology was used to generate the data
required to ascertain the level of risk. Using this methodology, the occupancy of vehicle seats by passengers
was simulated using two different strategies. The first is an empirical approach to the behaviour of passengers
when occupying a free seat and the second attempts to minimise the risk of contagion. For each of these
strategies, the interactions with risk of infection between passengers were estimated, the patterns of these
interactions on the different routes of the transport systemwere obtained using k-means clustering technique,
and the impact of the strategies was analysed.
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INDEX TERMS Close contact patterns, clustering, COVID-19, data mining, epidemics, information
management, intelligent transport systems, public health.

I. INTRODUCTION16

As a result of the COVID-19 pandemic, the world has had17

to face multiple challenges in its efforts to mitigate the18

spread and consequences of the disease. In the context of19

public transport systems, operators and authorities have had20

to develop measures to prevent infections among their users.21

The implementation of these measures, together with the22

public perception of the risk of infection associated with the23

use of public transport, has on occasion caused a considerable24

loss of passengers on public transport systems, up to 90% in25

some cases [1], [2], [3], jeopardising their role as enablers26

of social equity [4]. Therefore, in the context of epidemics or27
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pandemics, it is of interest to have information that allows for 28

an objective assessment of infection risk on public transport, 29

as this knowledge can be used to develop and assess effective 30

measures to mitigate it. 31

This article presents the findings of a research study 32

designed with the aim of determining the infection risk 33

among passengers on the different routes of a public road 34

transport system (PRTS). This information can be used to 35

identify the routes with the highest risk of infection and to 36

assess the impact of different measures tominimise the poten- 37

tial risk. Such measures include devoting more resources to 38

those routes with the highest risk, or other measures that 39

do not involve more resources, such as using certain seating 40

strategies for passengers. The latter type of measures provide 41

alternatives to those that have been routinely implemented 42
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during the COVID-19 pandemic, such as suspending trans-43

port services or limiting the capacity of public transport vehi-44

cles. In this study, the concept of contact has been formalised45

to estimate the contacts that may have occurred during the46

scheduled services provided by a road transport network and47

to analyse how they vary according to different aspects. This48

research is in line with works that propose artificial intel-49

ligence [5] and big data [6] techniques for epidemiological50

control. To the best of our knowledge, the research presented51

in this paper is original in terms of the objectives pursued and52

the methodology used. The methodology takes as its starting53

point a formal framework based on epidemiological param-54

eters, commonly used entities in the definition of transport55

networks and the operations of a PRTS; it was implemented56

using the data mining paradigm. In this methodology, the57

initial source of data is the data generated in the transit58

system, where the data provided by smart payment systems59

based on contactless cards are of special relevance. These60

potentially massive starting data are processed to obtain a61

dataset, with a graph structure, which is used to estimate the62

number of interactions that carry a risk of infection in the63

public transportation system.64

In addition to this first introductory section, this article is65

organised into six sections. The second section presents a66

review of relatedwork. The third section presents themethod-67

ology used in the research; this methodology was applied68

to a real use case of an intercity PRTS used by millions of69

passengers annually. The results and a discussion thereof are70

presented in the fourth and fifth section respectively. The71

sixth section presents the limitations of this study. Finally,72

in the seventh section, we present our conclusions.73

II. RELATED WORKS74

This review of related studies has been developed in the75

context of the epidemiology of respiratory infectious diseases76

and is organised in two parts. The first part deals with studies77

that aim to obtain information on the patterns of person-to-78

person contacts that can lead to the transmission of this type79

of disease and, based on these patterns, tomodel the dynamics80

of disease transmission and/or design epidemiological con-81

trol measures. In this part, two types of publications have82

been reviewed: studies in which patterns are generated from83

inferred contacts and those in which patterns are obtained84

from sensor networks data. The second part reviews studies85

on the role of public transport systems in the transmission of86

this type of disease.87

A. USE OF CONTACT PATTERNS IN THE EPIDEMIOLOGY88

OF RESPIRATORY INFECTIOUS DISEASES89

In the 1880s, Carl Flügge observed that droplets expelled by90

an infected person when talking, coughing or sneezing could91

contain the pathogens that cause infectious diseases. Later,92

Wells [7], in his research on tuberculosis, made the distinction93

between ‘‘large droplet’’ and ‘‘small droplet’’. According to94

Wells, large droplets are deposited in the immediate vicinity95

of the infected person before they evaporate, in contrast to96

small droplets, which evaporate before they are deposited, 97

forming residual particulates from the dried material, called 98

aerosols or droplet nuclei. Building on this contribution, 99

it was considered useful to collect data reflecting human- 100

to-human contacts, as these data provide patterns of disease 101

spread and enable effective disease control measures to be 102

implemented [8], [9], [10]. Specifically, when studying the 103

dynamics of disease spread, the social contact hypothesis is 104

used. This assumes that the number of potentially infectious 105

contacts between people is proportional to the number of 106

social contacts, with this proportionality factor being an indi- 107

cator of the infectivity of the disease [11]. A mathematical 108

model used in these studies [12] uses the next-generation 109

matrix (N) to estimate how many people in different age 110

groups will become infected as a result of contact with an 111

infected person in a given group. This matrix is of such 112

relevance that a considerable number of studies have been 113

carried out to obtain it using different methodologies. 114

1) STUDIES BASED ON INFERRED CONTACT NETWORKS 115

Modelling infectious interactions between people in large 116

populations is a scientific challenge of interest. To do this, 117

network theory is used, representing the interactions in a 118

network called a contact network. As such, techniques that 119

attempt to synthesise these networks have been developed. 120

These techniques can be classified into two types: those 121

that generate the interaction network using real or simulated 122

egocentric data, and those that generate the network from 123

the simulated behaviour of individuals. In works based on 124

egocentric data, these data are provided by people (egos) 125

whose identity is known and refer to interactions they have 126

had with other people (alters) whose identity is unknown, but 127

some data are provided, such as their approximate age, for 128

example. The result is a set of interaction networks with a star 129

topology, in which egos are connected to their alters, which 130

provides valuable information about the heterogeneity of the 131

contact network and the patterns of interactions between dif- 132

ferent population groups. Valuable information is provided by 133

this type of study, such as the patterns that these interactions 134

follow and the probability of interactions between different 135

alters from egocentric data [13]. 136

Ferguson et al. [14] and Longini et al. [15] describe how 137

to estimate patterns of social contacts from census data, 138

assuming that they reflect the distribution of groups in the 139

population and household size. There is a comprehensive 140

set of studies inferring these patterns from data obtained 141

from surveys of the populations under study. The method- 142

ology used in these studies have often organised in three 143

stages. The first stage consists of a survey of selected indi- 144

viduals, in which they are asked to provide information on 145

their close contacts. The second stage consists of obtain- 146

ing a representation of the network of contacts between 147

different population groups, using a contact matrix (C). 148

Finally, the third step consists of analysing the dynamics of 149

the disease using the next-generation matrix (N), which is 150

obtained from the C matrix and available epidemiological 151
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data. Wallinga et al. [11] present a study on how to obtain152

transmission parameters by age group from a social contact153

survey on the conversational partners of the participants.154

The survey was conducted by face-to-face interviews in155

Utrecht, the Netherlands, in 1986, where 3084 were invited,156

2106 completed a questionnaire and 1813 met the crite-157

ria for further analysis. A survey-based study conducted in158

the framework of the European POLYMOD project is pre-159

sented in [16]. The study involved 7297 participants from 8160

European countries. In [17] the BBC Pandemic project is161

presented. This study was developed in the UK and reported162

social contact information from 40 177 participants who163

completed the study, out of the 86 000 participants initially164

recruited. Other studies using a similar methodology have165

been carried out in France [18], Russia [19], Hong Kong [20],166

Japan [21], Taiwan [22], Vietnam [23], in rural areas in167

Kenya [24], in South Africa [25], Peru [26] and Senegal [27].168

In the context of the COVID-19 pandemic, different studies169

have been conducted on contact patterns in pre-pandemic and170

pandemic periods in Luxemburg [28], China [29], UK [30],171

Netherlands [31] and USA [32]. These studies show that as a172

result of various measures to ensure social distancing, social173

contacts are reduced by between 40% and 85%, depending174

on the country. In [33] a study is carried out on the patterns175

of social contacts in lockdown and post-confinement periods,176

which are compared with patterns obtained in pre-pandemic177

periods.178

The generation of contact networks from simulated179

population behaviour is another technique used in epidemi-180

ology. Stochastic simulation based on agents that emulate181

the behaviour of individuals in households and workplaces,182

resulting in a network of interactions between potentially con-183

tagious individuals, is used in [8] to study the effectiveness184

of a mass vaccination campaign versus a targeted vaccina-185

tion campaign to control the spread of smallpox disease in186

structured communities of 2000 people. In [15], the same187

simulation technique is used to study the effectiveness of188

the use of antivirals, quarantines and vaccination against an189

avian influenza pandemic in a population of 500 000 people190

distributed over 5625 km2 and structured according to the191

2000 population census of Thailand. Agent-based stochastic192

simulation is also used in [14] to evaluate the effective-193

ness of using antivirals as a containment measure for an194

early-stage avian influenza pandemic. The simulation emu-195

lates the behaviour of a population of 85 million people196

located in a 100 km2 area in Thailand incorporating house-197

holds, workplaces and schools. In [34] the same technique198

is used to emulate the behaviour of the population in the199

UK and the USA to analyse different epidemiological control200

measures (household quarantines, perimeter confinements,201

school and workplace closures, travel restrictions and clinical202

treatments) in the context of an influenza pandemic. In [35],203

an agent-based simulation is used to model the movements204

of 1.5 million people in Portland, Oregon, USA, between205

180 000 different locations. The goal of the simulation was206

to detect the presence of two people in the same place at the207

same instant in time, to generate a static network of contacts, 208

and to predict the number of contacts that occur at each 209

location. The researchers found that the network was highly 210

heterogeneous, in terms of the number of contacts, and had 211

properties analogous to ‘‘small-world’’ networks. In order to 212

better predict outbreaks of SARS (Severe Acute Respiratory 213

Syndrome), Meyers et al. [36] obtained the contact network 214

of an urban population using different mathematical models 215

and through a stochastic simulation of the behaviour of the 216

people in the population, where contacts occur randomly, 217

in homes, schools, workplaces, hospitals and other public 218

places. The researchers drew on population data from the 219

city of Vancouver, British Columbia. Stochastic simulation 220

of the behaviour of individuals belonging to large popula- 221

tions was also used in [37]. The researchers found that the 222

dynamics of influenza epidemics modelled using the contact 223

network generated from the simulation was consistent with 224

epidemiological data from the 1957–1958 and 2009 influenza 225

pandemics. 226

2) STUDIES BASED ON CONTACT DATA COLLECTED VIA 227

SENSOR NETWORKS 228

Technological advances in mobile communications and sen- 229

sor networks have also been applied by researchers to 230

epidemiological monitoring. In this context, and more specif- 231

ically in the epidemiological monitoring of airborne dis- 232

eases, close contact is defined as two persons spending 233

a certain amount of time at a distance of less than a 234

given threshold. The following is a review of literature on 235

contact networks generated in different contexts of social 236

relationships, using different types of sensors. The method- 237

ologies followed by all these studies have the same objective, 238

which is to obtain data useful for modelling the dynamics of 239

infectious disease, using a compartmental SIR (Susceptible- 240

Infected-Recovered) model [38], or to evaluate the impact of 241

epidemiological control measures. These data are: frequency 242

of contacts, duration, location of contacts, contact network, 243

and contact matrices between different clusters of partici- 244

pants. Because they do not coincide with the aims of the 245

research presented in this article, we have not considered 246

studies on the tracing of contacts for epidemiological control 247

in health crisis situations. 248

Isella et al. [39], analysed contact data from a scien- 249

tific conference and a museum exhibition using RFID 250

technology. The number of contact records analysed was 251

10 000 for a scientific conference and 230 000 for an exhibi- 252

tion. Cattuto et al. [40] presented a scalable, high-resolution 253

environment for the acquisition and analysis of person-to- 254

person contacts using RFID technology. Three use cases are 255

described in this work: an exhibition, in which 25 people 256

participated, resulting in 8700 contacts, and two scientific 257

conferences, in which 575 and 405 people participated in each 258

event, resulting in 17 000 and 60 000 contacts, respectively. 259

Salathé et al. [41] proposed a mobile sensor network, based 260

on TelosB motes to obtain the network proximity interactions 261

(up to 3 metres) in a high school. During a month, 788 people 262
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participated in the study and 21 489 991 interactions were263

recorded. Isella et al. [42] presented a study conducted to264

obtain the close contact network (up to 1.5 metres) between265

patients, healthcare staff and caregivers in a hospital. In this266

work, they used RFID technology, recording 16 000 close267

contacts for 7 days, in the peak period of the 2009 A/H1N1268

influenza pandemic. Stehlé at al. [43] presented a study to269

obtain the close contact network (up to 1.5 metres) in a pri-270

mary school. They used RFID technology and the participants271

were 242 people. The number of close contacts recorded was272

77 602 for two days. Around 500 students from the Technical273

University of Denmark participated in a study [44], which274

used Bluetooth technology to record the proximity between275

them. The proximity records were used to analyse how the276

proximity between people affects the spread of an infectious277

disease, using a SIR model. Génois and Barrat [45] analysed278

the properties of contact networks at different spatial res-279

olutions, studying the differences between real face-to-face280

contact networks and surrogate face-to-face contact networks281

obtained from co-presence data.282

In the context of the COVID-19 pandemic and in order to283

monitor crowded environments, the use of thermal sensors284

installed on Unmanned Aereal Vehicles (UAV) have been285

proposed in [46] and [47]. A study of disease spread286

is presented in [48], using a SEIR (Susceptible-Exposed-287

Infectious-Recovered) model [49] in which people’s mobility288

was obtained from disaggregated mobility data from mobile289

phone services. The study was conducted in 10 of the largest290

cities in the US, recording the movements of 98 million291

people every hour from 1 March to 2 May 2020. A compre-292

hensive review of the use of different technological advances293

to mitigate the impact of this pandemic, including the use294

of IoT, UAV and 5G for epidemiological control purposes,295

is presented in [50].296

B. STUDIES ON THE ROLE OF PUBLIC TRANSPORT IN THE297

SPREAD OF RESPIRATORY INFECTIOUS DISEASES298

Public transport systems are used daily by millions of people299

all over the world. For this reason, epidemiological knowl-300

edge regarding these systems is of interest, both from a301

scientific perspective and from the point of view of epidemi-302

ological control. The following studies focus on modelling303

how the spread of respiratory infectious diseases occurs.304

Merler and Ajelli [51] analysed the spread of a Europe-wide305

influenza epidemic by modelling long-distance travel using306

data from the European railway system and relating popu-307

lation heterogeneity to the mobility of people in the spread308

of the pandemic. A simulation tool for analysing the spread309

of an influenza epidemic in New York City was presented310

by Cooley [52]. This simulation was based on a compart-311

mental SEIR influenza disease transmission dynamicsmodel,312

and drew on epidemiological parameters obtained from the313

1957–1958 pandemic and simulated subway ridership for314

a total of approximately 8 million passengers. A study on315

the relationship between crowded environments in public316

transport systems and the spread of airborne infections was317

presented by Goscé and Johansson [53]. The study used 318

epidemiological parameters of influenza-like illnesses and 319

mobility data from the London Underground obtained from 320

travel records generated by its passengers using an automatic 321

payment system based on a contactless card. Troko et al. [54] 322

examined whether the use of public transport is a risk factor 323

for acute respiratory infection. The authors used epidemi- 324

ological data obtained in the 2008–2009 influenza season 325

and related it to data on bus and tram usage using multiple 326

regression techniques. 327

Recently, in the context of the COVID-19 pandemic, 328

Luo et al. [55] described a contact-tracing study on an out- 329

break in Hunan Province, China, involving 10 passengers on 330

two public transport buses. A case of community transmis- 331

sion among bus passengers was reported by Shen et al. [56]. 332

The authors suggested that this outbreakwas due to poor vehi- 333

cle ventilation. A study on the risk of COVID-19 transmission 334

among passengers on a high-speed train system in China 335

was presented by Hu et al. [57]. In this study, the authors 336

developed a model that quantifies the risk of transmission 337

on the basis of travel time and distance between passengers. 338

Severo et al. [58] analysed the role that the urban rail system 339

in the city of Lisbon played in the transmission of COVID-19 340

in said city. The authors used confirmed SARS-CoV-2 data in 341

this city for the period from 2 March to 5 July 2020 and, 342

using geographical data, linked the cases to the train stations 343

closest to the homes of the infected passengers. The authors 344

concluded that there is no relationship between proximity 345

to train stations and illness, suggesting that socioeconomic 346

factors affect infection dynamics. 347

III. METHODOLOGY 348

The objective of this study is to acquire information on 349

the risk of infection on the routes operated in a PRTS. The 350

knowledge gained can be used to identify the routes with the 351

highest risk and to evaluate the impact of different measures 352

to minimise this risk. To achieve this objective, data are 353

required which, on many occasions, are not available and 354

therefore have to be estimated by processing a large volume 355

of data. For this reason, a data mining methodology was 356

used. The formal framework used in the methodology, and 357

then the methodology itself, which consists of two stages, 358

as illustrated in Fig. 1, are set out below. 359

This methodology differs significantly from the method- 360

ologies employed in the studies cited in the previous section 361

on related works. With regard to the studies that use surveys 362

to infer the network of contacts, this methodology makes it 363

possible to obtain a large number of samples without first 364

having to select the elements that form the sample to be anal- 365

ysed. Potentially, all passengers who use the public transport 366

system under consideration contribute with their trips to the 367

initial sample. 368

Compared to studies that infer the contact network by sim- 369

ulating the behaviour of the study population, this method- 370

ology uses data that reflect the real movements of people 371

and does not simulate these movements. This avoids the high 372
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FIGURE 1. Scheme of the processes and data of the two stages of the
methodology.

computational cost involved in such simulation techniques.373

As for the studies that use sensors to determine the contacts374

between people, the methodology presented herein estimates375

these contacts without the need for any technological imple-376

mentation, as it uses data taken from the transport operations.377

Finally, in the specific context of public transport systems,378

this methodology differs from the methodologies described379

in the section on related works in terms of the objective380

pursued.381

The objective of the methodology is to estimate the risk of382

infection among users of a public transport system based on383

their travel behaviour. To do this, the challenge of estimating384

data that are not known, but which are required to estimate385

the infection risk, must be addressed. Moreover, as will be386

seen, the methodology is complete and parametrisable, both387

from the point of view of the public road transport system388

and from the epidemiological point of view. To the best of our389

knowledge, these features make it an original methodology.390

A. FORMALIZATION391

In the context of respiratory infectious diseases, in general392

and at community level, a risk of infection is considered to393

exist when an uninfected person has been in close contact394

with an infected person. In the case of COVID-19, an unin-395

fected person is considered to have been in close contact with396

an infected person when, within a 24-hour interval, these two397

persons have been within a distance of less than 2 metres398

for at least 15 minutes. These 15 minutes may be a single399

exposure or multiple exposures with a cumulative duration of400

15 minutes or more [59]. In order to generalise the concept401

of close contact, in this methodology it is determined by402

three parameters: v1, v2 and v3. A close contact occurs when403

an uninfected person has been with an infected person at a404

distance of less than v1, for a time equal to or greater than v2,405

in a period or time window of duration v3. The values of v1,406

v2 and v3 depend on the infectious disease in question. For407

instance, in the case of COVID-19, distance v1 is 2 metres,408

cumulative time value v2 is 15 minutes and time window v3 is409

24 hours. Based on this definition, the objective of the study410

is not to estimate the number of close contacts in the PRTS, 411

since no personal passenger data are collected and therefore 412

it is not known whether or not the passenger is infected, but 413

to estimate the number of close interactions between passen- 414

gers. In the formal framework used, an interaction is defined 415

as the event in which two passengers physically remain in 416

the same public transport vehicle for a period of time, at a 417

distance of less than value v1. When one or more interactions 418

with a cumulative duration equal to or greater than v2 occur 419

between two passengers in period of duration v3, then a close 420

interaction event occurs between them. 421

For the purposes of this research, the entities of interest 422

for the PRTS are: the transport network, the routes defined 423

in this network operated by public transport vehicles, and the 424

vehicle journeys made by these vehicles along these routes. 425

The transport network is represented as a directed graph 426

G = G(N ,A), where N represents the set of nodes of the 427

network and each node of this set represents a point in the 428

transport network where passengers can board or alight from 429

the vehiclesN = {ni}, where subscript i is the point identifier, 430

and A represents the set of simple arcs linking two nodes 431

A = {ai}, where subscript i is the arc identifier. The next 432

entity to be defined is the route. A route is defined as the 433

journey taken by vehicles carrying passengers. Considering 434

graph G, a route is defined as an ordered sequence of arcs 435

(ai, . . . , an), where ai, . . . , an ∈ A. The set of routes defined 436

in the transport network is represented by R = {ri}, where 437

subscript i is the route identifier. A segment of route ri is 438

defined as an ordered sequence of arcs (ap, . . . , aq) along 439

route ri. The entity associated with the planning of operations 440

performed in the transport network is the vehicle journey. The 441

set of completed vehicle journeys is represented by J = {Ji}, 442

where Ji is the set of journeys completed on the route identi- 443

fied by subscript i. Alternatively, the set of vehicle journeys, 444

irrespective of the route followed, that are completed in a time 445

period T is represented by the notation JT . The set of vehicle 446

journeys that consist of carrying passengers on route i during 447

time period T is represented by Ji,T . If instead of time period 448

T , we have moment of time t , then Ji,t represents the set 449

of vehicle journeys on route i for which the start time is t . 450

Finally, if v identifies a vehicle, then Ji,t,v represents a vehicle 451

journey on route i that begins at time t and is performed by 452

vehicle v. The trip taken by a passenger on vehicle journey 453

Ji,t,v is defined as the route segment (ap, .., aq) that the vehi- 454

cle has travelled while the passenger is on the vehicle. The 455

duration of the trip the passenger has made is the time elapsed 456

since the passenger boards the vehicle at origin node ap of the 457

arc and alights at destination node aq of the arc. 458

At this point, the concept of an interaction event between 459

two passengers, p1 and p2, on the PRTS used in the method- 460

ology can be formalised. Specifically, an interaction event is 461

said to occur if the following three conditions are met: 462

Condition 1. Both have travelled on the same vehicle 463

journey, ji,t,v. 464

Condition 2. The trips made by p1 and p2 on Ji,t,v have at 465

least one common arc. 466
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TABLE 1. Notation of the formal model used by the methodology.

Condition 3. Passengers p1 and p2 have been less than467

v1 metres apart during the common arcs of the trips made by468

p1 and p2 in Ji,t,v.469

In addition, if during a time window of duration v3, the470

cumulative duration of all interaction events is equal to or471

greater than v2, then a close interaction event occurs. The472

interaction events that occur on all routes of the transport473

network during time period T are represented by ET . The474

events that occur during time period T on route i are repre-475

sented by Ei,T . Therefore, ET = {Ei,T }. The set of interaction476

events occurring on vehicle journey Ji,t,v is represented by477

Ei,t,v. Table 1 summarises the entities used in this formal478

framework.479

To study the interaction events between passengers in the480

transport network, information is needed about the trip made481

by each passenger: the origin and destination nodes, the date482

and time of the start of the trip, and in the case of close483

interactions, the distance of separation from other passengers484

with whom he or she travelled during a vehicle journey. Most485

PRTSs do not use pre-assigned seating, so it is not known how486

far apart passengers were during the trip and in certain cases,487

depending on the payment system used by the passenger, their488

destination is not known either. Therefore, a challenge in this489

research was how to estimate this unknown data.490

B. DATA PREPARATION STAGE 491

The objective of this stage is to generate the data records 492

representing the interaction events that may occur on each of 493

the routes of the PRTS during the selected study period T . The 494

data structures and procedures are shown in Fig. 1. The main 495

source of the data is the Transport Data Base (TDB), which 496

contains all data relating to the definition of the transport 497

network, the planning of operations and the provision of 498

services. The Transport System Graph (TSG) is a graph 499

database that contains, firstly, all the entities mentioned in 500

the previous section, completed, consolidated and coher- 501

ent in the study period — fundamental aspects when han- 502

dling a large volume of data — to facilitate, secondly, the 503

process of estimating interactions that are meaningful and 504

persistent. 505

This stage comprises four processes. The first two pro- 506

cesses — final node estimation and selection, filtering and 507

loading — generate and complete the set of entities and 508

relationships to be represented in the TSG. The first — 509

final node estimation — estimates the destination node of 510

the trips made by the users when necessary and will be 511

explained in detail in Section III-B1. The second— selection, 512

filtering and loading — encompasses all the tasks related 513

to the generation and loading of the TSG from, on the one 514

hand, the records contained in the TDB relating to the trans- 515

port network, vehicles, users, cards, services and trips made, 516

and on the other, the destination stops as estimated by the 517

previous procedure, guaranteeing the reliability, accuracy, 518

completeness and consistency of all the data. The third — 519

seat identification — obtains, for each seat of each type of 520

bodywork in the fleet of vehicles, the set of seats that are 521

at a distance less than or equal to a parameter called the 522

safety distance, based on a two-dimensional representation 523

of the vehicle bodywork (location of seats). This safety dis- 524

tance may correspond both to the epidemiological parameter 525

v1 and to the distance threshold of the different seat alloca- 526

tion policies. Once the three processes described above have 527

been executed, the data necessary for the estimation of the 528

interaction events that take place in the vehicle journeys are 529

generated. This estimate is obtained by means of the fourth 530

process in this stage — interaction generation — which, 531

based on parameter v1 and the seat allocation simulation, 532

which will be explained in Section III-B2, generates a record 533

of the total estimated interactions for each of the completed 534

vehicle journeys, composed of the fields shown in Table 2, 535

where field NI1 is the total number of interactions lasting 536

1 minute, NI2 the total number lasting 2 minutes, and NIm 537

the total number of estimated interactions lasting longer in 538

the vehicle journey. As this is an estimation process that 539

under certain conditions performs a random allocation of 540

vacant seats, repeated execution of this process will generate 541

different sets of records, which are of interest in themodelling 542

phase. 543

Fig. 2 shows the interaction event records of the vehicle 544

journeys on two routes. The records represented in Fig. 2(a) 545

correspond to those of a 22-stop route with an estimated 546
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TABLE 2. Structure of records of estimated interactions on a vehicle
journey.

FIGURE 2. Representation of interaction events on vehicle journeys along
two different routes: (a) correspond to those of a 22-stop route with an
estimated journey time of 18 minutes and (b) correspond to those of a
5-stop route with an estimated journey time of 23 minutes.

journey time of 18 minutes. The records represented in547

Fig. 2(b) correspond to those of a 5-stop route with an esti-548

mated journey time of 23 minutes. The horizontal axis repre-549

sents the duration, inminutes, of the interaction events and the550

vertical axis represents the estimated number of interaction551

events. Each grey curve represents the estimated interaction552

event records for a vehicle journey on the route. The red553

vertical line identifies the boundary of the number of events554

lasting 15 minutes or more, above which close interactions555

are considered.556

1) DESTINATION STOP ESTIMATION PROCESS557

The objective of this process of the methodology is to solve558

a problem that frequently arises in data mining projects.559

This problem consists of handling data sets with missing560

values. In a general context, this problem is addressed by561

Dinh et al. [60] by proposing a novel method, called Clus-562

tering Mixed Numerical and Categorical Data with Missing563

Values (k-CMM), to classify datasets with a high number564

of missing values. In the specific context of traffic accident565

data analysis, this challenge has been addressed by Deb and566

Liew [61], who proposed a method based on decision trees.567

Considering previous works that address how to estimate the568

destination stop [62], [63], a procedure was developed to infer 569

the final destination of the trips made by passenger p— from 570

one of the two categories above—when this information has 571

not been recorded. 572

With the technologies commonly used by intercity road 573

transport services, it is possible to obtain information about 574

the trip made by passengers — at which node they started, 575

which vehicle they used and at which moment in time they 576

boarded the vehicle — but the end point and the duration of 577

their trip are not always recorded. This problem can be over- 578

come in the case of frequent travellers because they generally 579

use specific personal payment systems, such as contactless 580

cards, which automatically record payment transactions and 581

identify the user. There are several types of frequent users, 582

among which the most common are: 583

• Passengers that make multi-stage trips, such that the end 584

node of one stage (transfer node) is close to the start node 585

of the next stage. 586

• Passengers who make single-stage trips to their place of 587

work, study, public service or leisure andwho also return 588

using the PRTS. 589

These types of trips exhibit a common pattern: on two consec- 590

utive trips made by the same passenger, the destination node 591

of the first is located within a short distance of the origin node 592

of the second. This proximitywill be determined by a distance 593

threshold depending on the type of transport network, smaller 594

in the case of urban transport and larger in the case of intercity 595

transport. This procedure is based on the known data for two 596

consecutive trips made by p. For each trip made by p on 597

vehicle journey Ji,t,v, node n at which p started the trip and 598

time t ′ of the beginning of the trip are known, where node n 599

is an origin node of one of the arcs forming the sequence of 600

arcs (ap, . . . , aq) that form the segment of route i travelled on 601

Ji,t,v. Moreover, t ≤ t ′, meaning that the start of the user’s trip 602

t ′ is equal to or later than the start of vehicle journey t . The 603

purpose of the procedure is to ascertain the final stop of the 604

trip made by p on Ji,t,v and, therefore, the sequence of arcs 605

that form the segment of route i travelled by p. To estimate 606

final stop q of journey Ji1,t1,v1 , the procedure uses the known 607

data for the next trip made by p. If Ji2,t2,v2 is the next trip made 608

by p, then node n2 and time t ′′ at which he or she started the 609

journey are known. If nodes n1 and n2, the starting nodes of 610

the two vehicle journeys, are not the same, and are not within 611

a distance threshold that determines that they are similar (on 612

both sides of a two-way road, at an intersection, or are close 613

consecutive nodes on the same route), then final stop q of the 614

trip made by p on Ji1,t1,v1 would be the stop on route i1 closest 615

to stop n2 at which p started the trip on Ji2,t2,v2 , provided 616

that this final node q is at a distance from n2 not greater than 617

the proximity threshold indicated above, that is, it is not too 618

far away. Once the final stop has been deduced, the time of 619

the trip made by p will be the sum of the time taken by v to 620

traverse the sequence of arcs (an1 , . . . , aq1 ). 621

Fig. 3 illustrates this procedure. It represents, by means 622

of a graph, a generalisation of the procedure in the case of 623
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FIGURE 3. Procedure for estimating the destination stop of a trip.

two consecutive trips in time of passenger p, trip i and trip624

i + 1. The orange arcs represent the route of the scheduled625

service used by the passenger on trip i, and the node at626

which the passenger starts this trip is highlighted. The blue627

arcs represent the route of the scheduled service used by the628

passenger on trip i + 1, and the node at which the passenger629

starts this trip is highlighted.630

The green node is the estimated end node of trip i (the631

objective of the procedure). The nodes encircled by a dotted632

line represent nodes considered similar due to their geograph-633

ical proximity. The grey shaded area denotes the maximum634

distance for determining nodes close to the start node of635

trip i + 1. The algorithmic description of the procedure is636

presented in Algorithm 1.637

To validate the proposed method, it was applied to a set638

of trips where the destination stop is known and the result of639

the estimation for each trip was compared with the known640

destination. The test dataset was obtained from the trans-641

port system selected as a use case in Section IV, where the642

results are presented. The data contained in this test dataset643

correspond to the records generated from trips made using644

a contactless card as a means of payment and a fare option645

that requires the passenger to check in at the start of the trip646

and to check out upon arrival at the destination, where the647

destination stop is recorded. The number of trips in this test648

dataset was 278 694. For this set of trips, the proposedmethod649

estimated the destination stop in 205 183 cases (73.6 %) and650

failed to do so for 73 511 trips (26.3%).651

Table 3 presents the numbers of trips for which the destina-652

tion stopwas estimated as a function of the Euclidean distance653

between the estimated stop and the known stop. The first654

column shows the distance between the estimated stop and655

the known stop (D). The second column shows the number656

of trips (NT) in which the destination stop was estimated as a657

function of the value of D, and the percentage of these trips in658

relation to the total number of trips in which the destination659

stop could be estimated.660

In the parameterisation of the destination stop estimation661

algorithm, the value used for the DSmax parameter — which662

represents the distance threshold for considering two stops663

Algorithm 1 Estimating the Destination of a Trip
Input data:

- Vehicle journey Ji1,t1,v1 taken by passenger p
- Node n1 at which p started journey Ji1,t1,v1
- Time t ′ at which p started journey Ji1,t1,v1
- Next vehicle journey Ji2,t2,v2 made by the passenger
- Node n2 at which p started journey Ji2,t2,v2
- Maximum distance DPmax at which two nodes are con-
sidered to be close

- Maximum distance DSmax at which two nodes are con-
sidered to be similar

Goal:
- Node q, estimated destination of p on vehicle journey
Ji1,t1,v1

if Euclidean distance between n1 and n2 > DSmax then
Obtain sequence of arcs of route i1 starting at node n1.
Output data for this step: sequence of arcs (an1 , . . . , aq1)
that form the largest possible segment of route i1 trav-
elled by p
for each route arc of the sequence (an1 , . . . , aq1 ) do
Obtain the Euclidean distance between the destination
node of the route arc and node n2. Output data for this
step: sequence of distances dan1 , . . . , daq1

end for
Obtain the minimum value dmin of the sequence
dan1 , . . . , daq1 and arc aj1 in which this value has been
obtained. Output data for this step: destination node q of
arc aj1
if (dmin < DPmax) and (Euclidean distance between
n1 and q > DSmax) then
The estimated destination stop of p on journey Ji1,t1,v1
is the final stop of arc aj1

else
The destination stop cannot be determined. There is
no near stop to the starting stop of the next journey,
or it is similar to the starting stop of the previous
journey

end if
else
The destination stop cannot be determined. The starting
stops are the same or similar

end if

to be similar — was 500 metres; the value of the DPmax 664

parameter — which indicates when two stops are close to 665

each other — was 1 km. Considering that in the case of inter- 666

city transport, stops are spaced along the length of a route, 667

these distance thresholds are reasonable and conservative. 668

As can be seen in Table 3, for all trips for which the 669

destination stop was estimated, in 71.6% the estimated des- 670

tination stop was less than 1 km from the actual destina- 671

tion stop. Considering the results of this validation test, this 672

parameterisation of the DSmax and DPmax values makes it 673

possible to obtain an estimate of the destination stop for a 674
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TABLE 3. Numbers of trips for which the destination stop was estimated.
The first column shows the distance between the estimated stop and the
actual stop (D). The second column shows the number of trips (NT) for
which the destination stop was estimated as a function of the value of D.

FIGURE 4. Representation of the passenger areas of a vehicle.

significant proportion of the trips for which this information675

is not available.676

2) SIMULATION OF SEAT ASSIGNMENT ON A VEHICLE677

JOURNEY678

In intercity PRTSs that are not long distance, it is not always679

possible to know the distance between passengers during a680

vehicle journey, since passengers are not assigned a seat when681

they travel and, therefore, when passengers board the vehicle,682

they can occupy the vacant seat of their choice. To address683

this challenge, it is assumed that all passengers are seated in684

one of the available vacant seats (when the vehicle capacity685

is exceeded, the process rules out new passengers until a seat686

becomes available) and that they remain in the same seat687

during their journey, and simulates the choice of seat based688

on various assumptions about passenger behaviour. The way689

the procedure is implemented is shown below.690

In the methodology, the distance between two passengers691

travelling in a vehicle is defined as the distance between692

the centre points of the seats they occupy. In order to sys-693

tematise the process of obtaining the seat centre points and694

thus automatically obtain the distances between seats, a two-695

dimensional representation model of the vehicle space for696

passengers has been developed that takes into account the697

wide variety of bodywork types used in intercity PRTSs.698

Fig. 4 shows a representation of the passenger zones of one of699

the vehicle types considered in this study in two of the vehicle700

types considered in this study. A reference system to obtain701

the coordinates of the centre of each seat is also shown in red702

in this figure.703

In this research, two alternative seat allocation policies 704

were considered. The first is the Empirical Policy (EP). This 705

policy is based on observed behaviour whereby a passenger 706

prefers not to sit next to another passenger, without any other 707

consideration. The second policy aims to reduce the risk of 708

infection and is called the Minimise Risk Policy (MRP). 709

It consists of assigning the user to the free seat that is more 710

than 2m away from the largest number of passengers, in order 711

to avoid as many interactions as possible with passengers 712

on board the vehicle when boarding. In both policies, if the 713

occupancy of the vehicle does not permit strict application of 714

the allocation criterion, then a seat is randomly allocated from 715

the vacant seats that are in the best circumstances according 716

to the allocation policy used. 717

The allocation procedure is based on three parameters the 718

values of which vary according to the allocation policy. The 719

first parameter is the safety distance, which is determined by 720

the allocation strategy. The second parameter is the affected 721

seats list, which is a list associated with each seat of each 722

type of bodywork in the vehicle fleet that contains the list of 723

seats that are affected by its occupancy, and which is directly 724

dependent on the value of the safety distance parameter. The 725

third parameter is the risk potential, which is a value assigned 726

to each of the vacant seats in the vehicle during the course of 727

a vehicle journey and which determines its potential risk: it 728

increases as the seats in which it appears in the affected seats 729

list are occupied and decreases when any of these seats are 730

vacated. 731

The procedure simulates seat occupancy by passengers on 732

each vehicle journey Ji,t,v, taking as input parameters the 733

affected seats list pertaining to the vehicle bodywork type, 734

and the safety distance of the policy to be applied and the 735

origin and destination stops of each of the trips made by the 736

passengers on that vehicle journey. Following the route order 737

established for that vehicle journey, each stop is treated by 738

the procedure in the following way: first, it vacates the seat 739

of the passengers arriving at their destination and assigns 740

it the corresponding risk potential according to the occu- 741

pancy of the affected seats, lowering the risk potential of the 742

seats that are vacant in the list of affected seats, and then 743

it allocates the passengers starting their trip a seat with the 744

lowest risk potential among those that are randomly vacant, 745

increasing the risk potential of the vacant affected seats. The 746

algorithmic description of the seating procedure is described 747

in Algorithm 2. 748

C. MODELING STAGE 749

In general, in a data mining project, the modelling phase 750

is designed to generate new knowledge, applying tech- 751

niques of varying nature — both statistical and machine 752

learning — depending on the type of problem posed. As has 753

already been noted, the objective of the methodology is to 754

obtain information by detecting the patterns followed by 755

interaction events between passengers on the different routes 756

of the PRTS over a given period of time. To obtain these 757

patterns, a clustering process was implemented (see Fig. 1), 758

99158 VOLUME 10, 2022



T. Cristóbal et al.: Using Data Mining to Estimate Patterns of Contagion-Risk Interactions in an Intercity PRTS

Algorithm 2 Assignment of Seats in a Vehicle During a
Vehicle Journey
Input data:

- Safety distance. In the case of EP, this is the minimum
distance between the centres of two adjacent seats, and
in the case of MRP, it is 2 metres.

- Affected seats list. This is a list for each seat in each
bodywork type in the fleet, showing the number of
seats that are affected by occupancy of the seat. This
list depends directly on the value of the safety distance
parameter as determined by the allocation policy used.

Goal:
- Potential risk of a seat. This is a value that is assigned to
each of the free seats in the vehicle during the course
of a vehicle journey. The value increases as the seats
that appear in the affected seats list are occupied and
decreases when any of these seats are vacated.

When a vehicle journey, Ji,t,v, begins, the initial risk poten-
tial value is assigned to all the seats in the vehicle. This
initial value is the minimum, as it is assumed that there are
no passengers in the vehicle.
At each stop the vehicle makes during the vehicle journey:

for each user that alights from the vehicle do
Their seat ap is vacated and the minimum risk potential
value is assigned.
for each seat in its affected seats list do
if the seat is occupied then

The risk potential of the newly vacated seat ap
increases.

end if
end for
for each user boarding the vehicle do
They are randomly assigned one of the seats with the
lowest risk potential on the vehicle.
for each seat af in its affected seats list do

if the seat af is free then
The risk potential of seat af increases.

end if
end for

end for
end for

which takes into account certain parameters and is based on759

the estimation of these events made by the interaction gen-760

eration process. In schematic terms, it performs three tasks:761

generation of the different sets of input data for themodelling,762

modelling of each of these sets and, finally, creation of reports763

with the results.764

1) GENERATION OF THE DATASET TO BE MODELED765

This task is conditioned by different parameters. Notewor-766

thy among the parameters that determine the spatial and767

temporal limits of the scope of the study is that related768

to the discretisation of the duration of the interactions: the 769

data records of the estimated interactions have a temporal 770

granularity of 1 minute, but the analysis can be carried out 771

with a greater granularity — 5 minutes, 10 minutes, and 772

so on — depending on the type of routes or the ultimate 773

objective of the study. 774

Therefore, the interaction events on vehicle journey Ji,t , 775

that is, each field of record Ei,t , are accumulated in intervals 776

of k minutes, giving rise to an array of n integer values, 777

Ei,t [n]. A second relevant parameter is that which determines 778

the number of generations of estimated interactions to be 779

considered at this stage. If there are more than one, the final 780

array Êi,t [n] will be calculated as the arithmetic mean of the 781

records created for each vehicle, that is, if G is the number of 782

generations to be processed and Êg,t [n] corresponds to the 783

estimated events in generation g, then the final interaction 784

record will be: 785

Êi,t [n] =

∑G
g=1 Eg,i,t [n]

G
(1) 786

Finally, if in period T there have been N vehicle journeys, 787

at moments of time t1, t2, . . . , tN of vehicle journeys on route 788

i, then the overall representation of the interaction events of 789

that route in that period, Ei,T , is obtained from the expression: 790

Ei,T [n] =

∑N
n=1 Êi,tn [n]

N
(2) 791

That is, it is obtained by dividing the estimated number of 792

interactions in all vehicle journeys by the number of com- 793

pleted journeys. 794

2) MODELING 795

The objective of this stage of the methodology is to obtain 796

information to assess the risk of infection on the different 797

routes of the transport network, based on the interaction event 798

records Ei,T described above. From the definition of the data 799

record Ei,T [n] expressed in (2), epidemiological information 800

of interest can be extracted for each route for period T . Specif- 801

ically, MEi,T which is the estimated number of interaction 802

events on route i will be determined by (3), where n is the 803

number of elements in the record. The maximum value of 804

Ei,T [n] reflects the most likely interaction event duration. For 805

close interaction events, which as mentioned above depend 806

on epidemiological parameter v2, if k is the duration of the 807

interval used to define the Ei,T records, then index w of 808

the Ei,T record to which close interaction events correspond 809

is obtained by (4). For example, for COVID-19, this index 810

would have a value of 4, since the value of v2 for this disease 811

is 15 minutes and k is 5 minutes. CEi,T , that is, the average 812

number for vehicle journeys on route i, will be determined 813

by (5). 814

MEi,T =
n∑
i=1

Ei,T [i] (3) 815

w = INT(v2/k)+ 1 (4) 816
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CEi,T =
n∑

i=w

Ei,T [i] (5)817

The technique chosen to obtain patterns for the interaction818

events was the clustering of similar objects, for which the819

specific algorithm and the metric used to validate the results820

can also be parameterised. Since there may be a considerable821

disparity of routes in a transport network, conditioned both by822

type and duration, it is also possible to parameterise a prior823

classification of the routes into R sets, for example by the824

planned duration of the vehicle journeys, in order to minimise825

the distortion of the distances in this clustering procedure.826

This classification yields different ER,T sets that will be the827

input data for each clustering process.828

Another important parameter of this modelling phase is829

the total number of clusters to be generated in each ER,T830

set. The main consequence of this parameterisation process831

is that the number of clusters will probably not be optimal for832

all cases, but it is necessary since one of the main objectives833

of this study is to compare the interactions resulting from the834

application of different seat allocation strategies.835

Once each ER,T dataset and the number of clusters to be836

generated have been determined, the chosen algorithm will837

be run, resulting in different clusters where the elements Ei,T838

that are part of the cluster are similar, and where the centroid839

of each cluster represents the elements that are part of the840

cluster. In the methodology, the interaction event record for841

the centroid of each cluster obtained is represented by CR,T ,l ,842

where subscript l is the cluster identifier.843

3) ANALYSIS OF RESULTS: GENERATION OF KNOWLEDGE844

Once the clustering and evaluation procedures have been845

carried out for each set of interaction data, determined by the846

prior classification of the routes and by the seat allocation847

policy, we proceed to the analysis of the results, which may848

vary in nature. First, there are the centroids of each of the849

clusters, for which the record CR,T ,l is formed by the average850

number of interactions for each of the defined intervals of851

duration, determined by parameter k . Each centroid, together852

with the routes similar to it, provide relevant information on853

the average interactions of different durations. More specif-854

ically, by applying (3)–(5) with the data records of each855

centroid, information becomes available for all the routes856

belonging to the same cluster.857

IV. RESULTS858

The proposed methodology was applied to the intercity PRTS859

on the island of Gran Canaria (Canary Islands, Spain). This860

transport system is operated by the company Global Salcai-861

Utinsa, which annually transports around 20 million pas-862

sengers and covers 25 million kilometres. The time period863

studied was the month of December 2019, two months before864

the COVID-19 pandemic was declared. The decision to select865

this month was made because in this period demand was866

not affected by the travel restrictions imposed by the health867

authorities as a result of the state of emergency.868

TABLE 4. Some entities and instances of each uploaded to the TSG.

TABLE 5. Duration and total number of routes in each category.

A relational database was used to implement the method- 869

ology, with the relevant data required for this study from 870

the operator’s transport database, Neo4j, to implement 871

the graph database used by the methodology, and the 872

RStudio development environment [64] for programming 873

the procedures used in the data preparation and modelling 874

stages. 875

In the study period, 440 different routes were identified 876

on the transport network, with a total of 70 734 vehicle 877

journeys made. The number of passenger trips made in this 878

period was 2 260 744. Of these trips, 1 101 338 recorded the 879

origin stop and the destination stop, and 1 159 406 did not, 880

so the process of estimating the destination stop described 881

in Section III-B1 was applied to this set of trips. As a result 882

of this process, an estimation of the destination stop could 883

be completed on 860 909 trips; this was not possible on 884

298 497 trips. Finally, the process of selection and filtering 885

of records resulted in a total of 1 797 107 trips being loaded 886

into the TSG, and these were used to estimate passenger 887

interactions according to the two seat assignment policies 888

described in Section III-B2. Table 4 illustrates these data by 889

associating themwith the entities defined in the formalisation 890

described in Section III-A. 891

Once a complete set of transport activity data was obtained 892

and represented in the TSG, the remaining processes of 893

the methodology were implemented by adopting a series 894

of decisions based on aspects related to the transport net- 895

work, epidemiological aspects and the modelling technique 896

used. 897

In relation to the transport network, firstly, the routes were 898

classified depending on the time taken to complete them, 899

generating four subsets, four categories of routes R1, R2, 900

R3 and R4 with the following characteristics: subset R1 con- 901

tains routes which take less than 25 minutes to complete, 902

R2 routes which take more than or equal to 25 minutes and 903

less than 35 minutes, R3 routes which take between 35 and 904

47 minutes, and R4 routes which take more than or equal to 905
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TABLE 6. Total number of routes in each category.

47 minutes to complete. The maximum duration of a route in906

the transport network is 137 minutes.907

The duration and number of routes in each group is shown908

in Table 5. Thus, the number of interaction event duration909

intervals is the same for all routes belonging to the same910

subset. Secondly, and also related to the routes, these have911

been subdivided into four groups, according to the geograph-912

ical area through which they pass: N for the routes that run913

through the north, S for those that run between the capital,914

the east and the south, C for those that run between the capital915

and the central area, andM for the routes that, without passing916

through the capital, run between the south, the north and the917

centre.918

The reason for this decision is to analyse the patterns919

of interaction events according to the geographical areas920

through which the route services pass. The total number of921

routes in each area is shown in Table 6.922

As for other parameters, epidemiological parameter v1 was923

set to 2 metres, v2 to 15 minutes, the safety distance of924

the EP policy to 0.5 metres, and that of the MRP policy to925

2 metres, and the duration of interactions was discretised into926

k intervals of 5 minutes. For each policy, 3 generations of data927

were estimated.928

Lastly, a clustering modelling technique was chosen to929

identify the possible interaction profiles. The specific tech-930

nique used was the k-means algorithm, a widely used931

unsupervised algorithm that appears to give partitions which932

are reasonably efficient in the sense of within-class vari-933

ance, is easily programmed and is computationally economi-934

cal [65]. The process subdivides the n input data records into935

k partitions where each is associated with the partition nearest936

to its mean, where the mean of each partition is its significant937

element and its centroid, the profile that characterises it.938

To evaluate the quality of the clusters that were obtained the939

silhouette was used [66]. This value measures the degree of940

cohesion of the elements that make up the cluster, so that941

the greater the cohesion of a cluster, the closer its centroid942

will be to each element of the set, and therefore the more943

representative it will be. It takes values in the interval [−1, 1],944

so that the value−1 indicates a cluster with the lowest degree945

of cohesion and the value 1 indicates a cluster with the highest946

degree of cohesion. For the sake of clarity in presentation,947

the number of clusters for all datasets is set to 3. Having948

described how the methodology was implemented, the results949

are presented below. Figs. 5–8 show the clusters C1, C2,950

C3 obtained with the data generated by applying the EP951

(Figs. 5(a)–8(a)) and MRP (Figs. 5(b)–8(b)) seat allocation952

policy in each of the four defined route categories.953

FIGURE 5. Plots of clusters and centroids obtained by applying (a) policy
EP and (b) policy MRP to group of routes R1. In these plots, the centroids
of clusters C1, C2 and C3 are represented by green, blue and red curves
respectively.

The same criterion of presentation has been used in all 954

of them: each column represents the three clusters obtained 955

for each policy, ordered by the number of routes they con- 956

tain. In each cluster, the curve representing the centroid 957

obtained by applying the k-means algorithm is drawn. In the 958

k-means algorithm, the centroid of a cluster represents its 959

most significant value and corresponds to the mean value 960

of the elements that form the cluster. The cluster with the 961

green centroid is the most numerous, the cluster with the 962

blue centroid is the second most numerous, and the cluster 963

with the red centroid is the least numerous. In all the graphs, 964

the horizontal axis represents the discretised duration of the 965

average number of interactions per vehicle journey. The red 966

vertical line identifies the boundary of the mean number 967

of events lasting 15 minutes or more, above which close 968

interactions are considered. In addition, the legend of each of 969

the graphs includes four values that are considered significant 970

for analysis purposes: the total number of routes belonging 971

to the cluster (size), the value of its silhouette (sil), which 972

quantifies the coherence of the cluster, the maximum value of 973

average interactions of the profile obtained (max), and finally, 974

the sum of its average interactions with a duration greater than 975

or equal to 15 minutes, which may be considered a metric for 976

quantifying the total number of close interactions (CI) that 977

may occur in each cluster. 978

The plots in Fig. 5(a) show the results of the data clustering 979

procedure for the R1 set of routes (routes which take less than 980

25 minutes to complete), when interactions were estimated 981

VOLUME 10, 2022 99161



T. Cristóbal et al.: Using Data Mining to Estimate Patterns of Contagion-Risk Interactions in an Intercity PRTS

FIGURE 6. Plots of clusters and centroids obtained by applying (a) policy
EP and (b) policy MRP to group of routes R2. In these plots, the centroids
of clusters C1, C2 and C3 are represented by green, blue and red curves
respectively.

by applying the EP seat allocation policy. Of the total in this982

category, the estimation process resulted in some interaction983

on 87 routes, representing 80% of the routes. In the remaining984

20%, no interaction record was generated in the three simu-985

lations performed, as these were routes with a low number of986

vehicle journeys and passengers. As mentioned above, the987

three clusters generated are presented in order of size from988

largest to smallest. In this case, cluster C1 contains approxi-989

mately 88% of the routes and is quite cohesive, with the high-990

est silhouette value of the three. As for the curve representing991

its centroid, with the values (3.01 3.75 2.79 1.31 0.43), it can992

be observed that it is nearly a horizontal line, reaches its993

maximum value of 3.75 when the relative interactions per994

vehicle journey have a duration of 10 minutes and, when995

only narrow interactions are considered, it is characterised996

by the value 4.53, corresponding to the total number of inter-997

actions with a duration greater than or equal to 15 minutes.998

Cluster C2 contains routes on which interactions exhibit dis-999

parate behaviour — its silhouette value is very low — unlike1000

cluster C3 which, with only two routes, contains those with1001

the highest number of close interactions in the set, a total of1002

128 per vehicle journey.1003

The plots in Fig. 5(b) represent the results when the MRP1004

seat assignment policy is applied to the same set of routes,1005

and significant differences are observed with respect to the1006

EP policy. The first is that the number of routes with esti-1007

mated interactions decreases from 80% to 67%, that is, out1008

of 109 routes in the set, records are generated in 74 routes.1009

FIGURE 7. Plots of clusters and centroids obtained by applying (a) policy
EP and (b) policy MRP to group of routes R3. In these plots, the centroids
of clusters C1, C2 and C3 are represented by green, blue and red curves
respectively.

The second is that the maximum centroid values decrease 1010

by 22% in C1, the largest cluster, and by about 12% in 1011

C2 and C3 respectively. And the third, closely related to the 1012

preceding observation, is that the values characterising the 1013

centroids also decrease in C1, C2 and C3, by 20%, 24% and 1014

slightly more than 16% respectively. Again, cluster C1 has the 1015

highest coherence and C2 contains the most disparate route 1016

profiles. 1017

Plots (a) and (b) in Fig. 6 show the results of clustering 1018

the R2 category data (routes which take more than or equal to 1019

25 minutes and less than 35 minutes) using the two defined 1020

policies. In this case, there is hardly any reduction in the 1021

total number of routes affected by interactions, but there is a 1022

significant reduction in the estimated close interactions per 1023

vehicle journey in the results in (b) compared to those in 1024

(a), which is around 47% in the largest cluster C1, 33% in 1025

cluster C2 and 11% in cluster C3. 1026

The results for set R3 (routes which take between 35 and 1027

47 minutes), with 106 routes, are shown in Fig. 7. In this case, 1028

between 3 and 5 routes have no estimated interactions, and in 1029

cluster C1 a 31% reduction in interactions is observed when 1030

the MRP seat assignment policy is applied. In clusters C2 and 1031

C3 there is a regrouping of routes, all of them with a rather 1032

low coherence. 1033

Finally, the results for the 118 routes in the last set R4 1034

(routes which take more than or equal to 47 minutes to 1035

complete), which contains the routes with the longest journey 1036

times of more than 47 minutes, are presented in Fig. 8. 1037
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FIGURE 8. Plots of clusters and centroids obtained by applying (a) policy
EP and (b) policy MRP to group of routes R4. In these plots, the centroids
of clusters C1, C2 and C3 are represented by green, blue and red curves
respectively.

TABLE 7. Total number of routes in each area and group without (w/o)
and with estimated interactions in each policy.

Except for one, all of them give rise to some interaction in1038

the different simulations, and when comparing the results1039

obtained by the two seat allocation policies, again in the1040

most conservative — the MRP policy— there is a significant1041

reduction in the number of interactions compared to the EP,1042

which is around 34% in the first cluster, containing about 60%1043

of the routes in this set, 21% in the second cluster and 23%1044

in the third cluster.1045

Tables 7 and 8 show these results for the different geo-1046

graphical areas into which the transport network was subdi-1047

vided, also distinguishing between the two policies applied.1048

As a first approximation, Table 7 shows the total number of1049

routes in each area and each group for which interactions1050

were not estimated and for which interactions were estimated,1051

depending on the policy applied. It can be seen that there1052

is no significant decrease in the number of routes on which1053

TABLE 8. Distribution of the routes of each group in each area and each
cluster.

interactions are not estimated when the more conservative 1054

seat allocation policy is applied, with the exception of the 1055

R1 route category in the northern part of the transport net- 1056

work, where the number of routes with interactions decreases 1057

by just over 17%, from 40 to 33. 1058

Table 8, by contrast, shows the distribution of the routes in 1059

each of the geographical areas and each category in the clus- 1060

ters obtained. Although no substantial decreases are observed 1061

when applying the different policies, it does reflect data con- 1062

cerning the type of route in each area of the transport network, 1063

such as, for example, the fact that almost half of the routes in 1064

the south zone have a profile with a high number of close 1065

interactions. 1066

V. DISCUSSION 1067

The estimated interactions, as presented in this paper, provide 1068

new knowledge in two ways: on the one hand, about the 1069

interactions that may be occurring in the transport network, 1070

and on the other hand, the extent to which these are affected 1071

by applying different seating policies. This provides a way 1072

of measuring the effect of implementing rules or procedures 1073

to determine passenger locations in order to reduce contact 1074

between people. It should be noted that the results refer to 1075

estimated interactions over the entire study period, without 1076

distinguishing between different types of day (e.g. working 1077

or non-working) or between different time bands, which 1078

is a higher level of detail and is covered by the proposed 1079

methodology. 1080

The EP policy, where a passenger prefers to sit in a seat 1081

where the surrounding seats are unoccupied, determines the 1082

minimum threshold of interactions in systems where no seat 1083

allocation is applied, as it does not take into account people 1084

travelling together or the preferences of certain age groups. 1085

For this reason, the results obtained by applying this policy 1086

can be considered a measure of the interactions that, at the 1087

very least, are occurring in the vehicle journeys, both at 1088

network level and at the level of individual routes. From the 1089

results obtained with the records of the three simulations 1090

carried out with this policy, it can be seen that in Table 7, 1091

of the 440 routes of the transport network, in 26 no interaction 1092

is estimated, which represents 6%, and it is area C which has 1093

the highest proportion of routes with no interactions, more 1094

than 25%. In general, these are routes with a low number of 1095
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TABLE 9. Averages obtained by applying the two policies in cluster C1.

passengers and vehicle journeys, and almost all of them have1096

short routes, with journeys of less than 25 minutes.1097

In Table 8, of the 414 routes with estimated interactions,1098

firstly, area N stands out, with a generally low interaction1099

profile, since more than 90% of its routes are grouped in C1.1100

Secondly, area S, where the routes with the longest duration,1101

those included in R3 and R4, have a greater weight and where1102

the profiles with the highest number of close interactions are1103

also found; more than 80% of the total number of routes1104

grouped in C2 and C3 are in this area. Finally, areas C and M,1105

with a smaller number of routes, of medium-long duration1106

and which, for the most part, are grouped in the clusters with1107

the lowest interaction. As for the routes in the clusters with the1108

longest interactions, for example, those found in area C3 of all1109

the groups of routes, different types of routes can be observed,1110

some with less than 20 vehicle journeys in the month of the1111

study and others with more than 1000 vehicle journeys. To be1112

able to draw conclusions in these cases, it would be necessary1113

to apply greater temporal granularity to the records for the1114

period of study (at the level of days of the week and/or time1115

bands) in order to identify the possible causes.1116

As for the effects of applying a more conservative seat1117

allocation policy, in order to minimise interactions between1118

passengers, this methodology proposes a way of quantifying1119

it, based on two metrics associated with the clusters that are1120

generated: the total number of routes grouped in each cluster1121

(size) and the average number of estimated close interactions1122

(CI). As an example, and by way of summary, Table 9 shows1123

those obtained in cluster C1, the most numerous cluster as it1124

contains 75% of the affected routes, where it can be seen that,1125

while the number of affected routes decreases significantly1126

only in the shorter routes, the reduction in the number of close1127

interactions is significant in all types of routes, especially1128

among those with a duration of between 25 and 34 minutes.1129

VI. LIMITATIONS OF THE STUDY1130

This section describes the limitations of this study. The first1131

is that it assumes that there is a risk of infection between two1132

people when they are in close contact, and does not consider1133

the risk of transmission by aerosol or fomite. Therefore, the1134

methodology used could only be applied in the case of dis-1135

eases where the main mode of transmission is close contact,1136

as is the case with COVID-19 [67]. A second limitation is that1137

it is applied in intercity road transport systems and assumes1138

that all passengers are seated. For this type of transport sys-1139

tem, this assumption is not a serious limitation, since standing1140

is usually not permitted for safety reasons. The methodology1141

followed would not, however, be applicable to the case of1142

urban public road transport, where standing is permitted and 1143

is common. In the context of a pandemic, it is common to 1144

limit vehicle occupancy in this type of transport using criteria 1145

that are not based on objective parameters. The proposed 1146

methodology could therefore be applied to obtain information 1147

that would facilitate the planning of transport services with 1148

the aim of reducing the risk of infection based on a calculation 1149

of capacity using objective parameters, as opposed to simply 1150

reducing capacity by an arbitrary amount. Another limitation 1151

is that it is assumed that there is a risk of infection in vehicles 1152

when two passengers are on the same vehicle at the same 1153

time. Therefore, the presence of two passengers at the same 1154

stop on the transport network has not been considered. In the 1155

case of intercity public road transport, this limitation is of 1156

relative importance for two reasons. The first reason is that 1157

this type of transport is planned around timetables, which 1158

means that passengers arrive at a stop a few minutes before 1159

catching the vehicle in which they will be travelling, and 1160

it is not common for them to spend long periods of time 1161

at the stops. The second is that most of the stops on this 1162

type of transport system are located outdoors, thus reducing 1163

the risk of infection. The final limitation is that since the 1164

passenger’s seat in the vehicle is not known, the location of 1165

the passenger was simulated based on a seating allocation 1166

policy. The importance of this limitation is also relative, since 1167

the objective of the study was to learn on which routes and 1168

at what times the risk of infection is greatest. In this study, 1169

the policy applied was an EP policy, the aim of which is 1170

to approximate the passenger’s seating behaviour. In reality, 1171

close interactions are likely to be greater, as the possibility 1172

that passengers may be travelling together is not taken into 1173

account. However, for the purposes intended, this limita- 1174

tion does not invalidate the information obtained. Moreover, 1175

by simulating the location of passengers in vehicles, it is 1176

possible to assess the impact of different seating strategies 1177

designed to minimise the risk of infection and maximise the 1178

available vehicle capacity. 1179

VII. CONCLUSION 1180

This article presents the results of a research project designed 1181

to gather information about the risk of infection on the routes 1182

of an intercity road transport system. This information can 1183

be used to identify the routes with the highest risk and to 1184

assess the impact of different measures to minimise this risk. 1185

To achieve this objective, a data mining methodology was 1186

used. The results were obtained by analysing a real case of 1187

a transport system where the data from an intercity transport 1188

operator on the island of Gran Canaria was analysed for the 1189

month of December 2019. 1190

The results provide new insights into the interactions that 1191

occur between passengers in a public transport network, 1192

useful both for epidemiological control by health authorities 1193

and for the transport operator when implementing effective 1194

measures to reduce the risk of infection. Specifically, the 1195

effects of two seat allocation policies were analysed. The first 1196

of these policies is an approximation of the usual behaviour 1197
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of passengers when choosing their seat in the vehicle, and1198

the second is a strategy that aims to minimise the risk of1199

infection. The methodology used to obtain these results was1200

parameterised in accordance with epidemiological aspects1201

and entities related to transport activity. To be precise, the def-1202

inition of close contact for COVID-19was used, together with1203

the duration of the routes analysed and the geographical area1204

in which they operate. Given the fact that the parameters of1205

the methodology can be adapted, it could be applied to other1206

diseases and use other transport-related aspects, such as the1207

type of route, time bands, periods of time, etc. This is made by1208

possible by the fact that the initial transport activity data can1209

be used to generate a coherent and robust data set structured1210

in the form of a graph. In order to obtain information about the1211

interactions that occur on the transport system, the k-means1212

classification technique was used to extract information from1213

the resulting clusters and their centroids.1214

ACKNOWLEDGMENT1215

The authorswish to express their gratitude to Salcai Utinsa S. A.1216

(GLOBAL) (one of the main road transport company that1217

operates in Gran Canaria) for their collaboration in providing1218

all the data used to develop this research work.1219

REFERENCES1220

[1] K.-Y. Wang, ‘‘How change of public transportation usage reveals fear of1221

the SARS virus in a city,’’ PloS One, vol. 9, no. 3, pp. 1–10, 2014.1222

[2] J. DeWeese, L. Hawa, H. Demyk, Z. Davey, A. Belikow, and1223

A. El-Geneidy, ‘‘A tale of 40 cities: A preliminary analysis of equity1224

impacts of COVID-19 service adjustments across North America,’’ Find-1225

ings, Jun. 2020, doi: 10.32866/001c.13395.1226

[3] E. Jenelius and M. Cebecauer, ‘‘Impacts of COVID-19 on public trans-1227

port ridership in Sweden: Analysis of ticket validations, sales and pas-1228

senger counts,’’ Transp. Res. Interdiscipl. Perspect., vol. 8, Nov. 2020,1229

Art. no. 100242, doi: 10.1016/j.trip.2020.100242.1230

[4] A. Tirachini and O. Cats, ‘‘COVID-19 and public transportation: Current1231

assessment, prospects and research needs,’’ J. Public Transp., vol. 22, no. 1,1232

pp. 1–21, 2020.1233

[5] M. Jamshidi, A. Lalbakhsh, J. Talla, Z. Peroutka, F. Hadjilooei,1234

P. Lalbakhsh, M. Jamshidi, L. L. Spada, M. Mirmozafari, M. Dehghani,1235

and A. Sabet, ‘‘Artificial intelligence and COVID-19: Deep learn-1236

ing approaches for diagnosis and treatment,’’ IEEE Access, vol. 8,1237

pp. 109581–109595, 2020.1238

[6] A. Corsi, F. Souza, and R. Pagani, ‘‘Big data analytics as a tool for1239

fighting pandemics: A systematic review of literature,’’ J. Ambient Intell.1240

Humanized Comput., vol. 12, pp. 9163–9180, Oct. 2021.1241

[7] W. F. Wells, ‘‘On air-borne infection: Study II. Droplets and droplet1242

nuclei,’’ Amer. J. Epidemiol., vol. 20, no. 3, pp. 611–618, Nov. 1934.1243

[8] M. E. Halloran, I. M. Longini, A. Nizam, and Y. Yang, ‘‘Containing1244

bioterrorist smallpox,’’ Science, vol. 298, no. 5597, pp. 1428–1432, 2002.1245

[9] N. M. Ferguson, ‘‘Planning for smallpox outbreaks,’’ Nature, vol. 425,1246

pp. 681–685, Oct. 2003.1247

[10] I. M. Longini, M. E. Halloran, A. Nizam, and Y. Yang, ‘‘Containing1248

pandemic influenza with antiviral agents,’’ Amer. J. Epidemiol., vol. 159,1249

no. 7, pp. 623–633, Apr. 2004.1250

[11] J. Wallinga, P. Teunis, and M. Kretzschmar, ‘‘Using data on social contacts1251

to estimate age-specific transmission parameters for respiratory-spread1252

infectious agents,’’ Amer. J. Epidemiol., vol. 164, no. 10, pp. 936–944,1253

Sep. 2006.1254

[12] O. Diekmann, J. A. P. Heesterbeek, and J. A. J. Metz, ‘‘On the definition1255

and the computation of the basic reproduction ratio R0 in models for1256

infectious diseases in heterogeneous populations,’’ J. Math. Biol., vol. 28,1257

no. 4, pp. 365–382, 1990.1258

[13] L. Danon, ‘‘Networks and the epidemiology of infectious disease,’’1259

Interdiscipl. Perspect. Infectious Diseases, vol. 2011, Mar. 2011,1260

Art. no. 284909, doi: 10.1155/2011/284909.1261

[14] N. M. Ferguson, ‘‘Strategies for containing an emerging influenza pan- 1262

demic in southeast Asia,’’ Nature, vol. 437, no. 7056, pp. 209–214, 1263

Sep. 2005. 1264

[15] I. M. Longini, ‘‘Containing pandemic influenza at the source,’’ Science, 1265

vol. 309, no. 5737, pp. 1083–1087, 2005. 1266

[16] J. Mossong, ‘‘Social contacts and mixing patterns relevant to the spread 1267

of infectious diseases,’’ PLoS Med., vol. 5, no. 3, p. e74, Mar. 2008, doi: 1268

10.1371/journal.pmed.0050074. 1269

[17] P. Klepac, S. Kissler, and J. Gog, ‘‘Contagion! the BBC four pandemic— 1270

The model behind the documentary,’’ Epidemics, vol. 24, pp. 49–59, 2018. 1271

[18] N. Lapidus, ‘‘Factors associated with post-seasonal serological titer and 1272

risk factors for infection with the pandemic A/H1N1 virus in the French 1273

general population,’’ PloS One, vol. 8, no. 4, pp. 1–8, Apr. 2013. 1274

[19] M. Ajelli and M. Litvinova, ‘‘Estimating contact patterns relevant to the 1275

spread of infectious diseases in Russia,’’ J. Theoretical Biol., vol. 419, 1276

pp. 1–7, Apr. 2017. 1277

[20] K. Leung, M. Jit, E. H. Y. Lau, and J. T. Wu, ‘‘Social contact patterns 1278

relevant to the spread of respiratory infectious diseases in HongKong,’’ Sci. 1279

Rep., vol. 7, no. 1, p. 7974, Aug. 2017, doi: 10.1038/s41598-017-08241-1. 1280

[21] Y. Ibuka, Y. Ohkusa, T. Sugawara, G. B. Chapman, D. Yamin, K. E. Atkins, 1281

K. Taniguchi, N. Okabe, and A. P. Galvani, ‘‘Social contacts, vaccina- 1282

tion decisions and influenza in Japan,’’ J. Epidemiol. Community Health, 1283

vol. 70, no. 2, pp. 162–167, 2016. 1284

[22] Y.-C. Fu, D.-W. Wang, and J.-H. Chuang, ‘‘Representative contact diaries 1285

for modeling the spread of infectious diseases in Taiwan,’’ , vol. 7, no. 10, 1286

pp. 1–7, Oct. 2012. 1287

[23] P. Horby, ‘‘Social contact patterns in Vietnam and implications for the 1288

control of infectious diseases,’’ PloS One, vol. 6, no. 2, pp. 1–7, Feb. 2011. 1289

[24] M. C. Kiti, T. M. Kinyanjui, D. C. Koech, P. K. Munywoki, G. F. Medley, 1290

and D. J. Nokes, ‘‘Quantifying age-related rates of social contact using 1291

diaries in a rural coastal population of Kenya,’’ PloS One, vol. 9, no. 8, 1292

pp. 1–9, Aug. 2014. 1293

[25] S. P. Johnstone-Robertson, ‘‘Social mixing patterns within a south African 1294

township community: Implications for respiratory disease transmission 1295

and control,’’ Amer. J. Epidemiol., vol. 174, no. 11, pp. 1246–1255, 1296

Nov. 2011. 1297

[26] C. G. Grijalva, N. Goeyvaerts, H. Verastegui, K. M. Edwards, A. I. Gil, 1298

C. F. Lanata, and N. Hens, ‘‘A household-based study of contact networks 1299

relevant for the spread of infectious diseases in the highlands of Peru,’’ 1300

PloS One, vol. 10, no. 3, pp. 1–14, Mar. 2015. 1301

[27] G. E. Potter, ‘‘Networks of face-to-face social contacts in Niakhar, Sene- 1302

gal,’’ PloS One, vol. 14, no. 8, pp. 1–22, Aug. 2019. 1303

[28] A. Latsuzbaia, M. Herold, J.-P. Bertemes, and J. Mossong, ‘‘Evolving 1304

social contact patterns during the COVID-19 crisis in Luxembourg,’’ PloS 1305

One, vol. 15, no. 8, pp. 1–13, Aug. 2020. 1306

[29] J. Zhang, M. Litvinova, Y. Liang, Y. Wang, W. Wang, S. Zhao, Q. Wu, 1307

S. Merler, C. Viboud, A. Vespignani, and M. Ajelli, ‘‘Changes in contact 1308

patterns shape the dynamics of the COVID-19 outbreak in China,’’ Science, 1309

vol. 368, no. 6498, pp. 1481–1486, Jun. 2020. 1310

[30] C. I. Jarvis, K. Van Zandvoort, A. Gimma, K. Prem, P. Klepac, G. J. Rubin, 1311

andW. J. Edmunds, ‘‘Quantifying the impact of physical distancemeasures 1312

on the transmission of COVID-19 in the U.K.,’’ BMC Med., vol. 18, no. 1, 1313

p. 124, May 2020, doi: 10.1186/s12916-020-01597-8. 1314

[31] J. A. Backer, L. Mollema, E. R. A. Vos, D. Klinkenberg, F. R. M. van der 1315

Klis, H. E. de Melker, S. van den Hof, and J. Wallinga, ‘‘Impact of physical 1316

distancing measures against COVID-19 on contacts and mixing patterns: 1317

Repeated cross-sectional surveys, the Netherlands, 2016–2017, April 2020 1318

and June 2020,’’ Euro Surveill, vol. 26, no. 8, 2021, Art. no. 2000994, doi: 1319

10.2807/1560-7917.ES.2021.26.8.2000994. 1320

[32] D. M. Feehan and A. S. Mahmud, ‘‘Quantifying population contact pat- 1321

terns in the United States during the COVID-19 pandemic,’’ Nature Com- 1322

mun., vol. 12, no. 1, p. 893, Feb. 2021, doi: 10.1038/s41467-021-20990-2. 1323

[33] P. Coletti, J. Wambua, A. Gimma, L. Willem, S. Vercruysse, B. Vanhoutte, 1324

C. I. Jarvis, K. Van Zandvoort, J. Edmunds, P. Beutels, and N. Hens, 1325

‘‘Comix: Comparing mixing patterns in the Belgian population during and 1326

after lockdown,’’ Sci. Rep., vol. 10, no. 1, pp. 1–10, Dec. 2020. 1327

[34] N. M. Ferguson, D. A. T. Cummings, C. Fraser, J. C. Cajka, P. C. Cooley, 1328

and D. S. Burke, ‘‘Strategies for mitigating an influenza pandemic,’’ 1329

Nature, vol. 442, no. 7101, pp. 448–452, Jul. 2006. 1330

[35] S. Eubank, ‘‘Modelling disease outbreaks in realistic urban social net- 1331

works,’’ Nature, vol. 429, no. 6988, pp. 180–184, May 2004. 1332

[36] L. A.Meyers, B. Pourbohloul, M. E. J. Newman, D.M. Skowronski, and R. 1333

C. Brunham, ‘‘Network theory and SARS: Predicting outbreak diversity,’’ 1334

J. Theor. Biol., vol. 232, no. 1, pp. 71–81, Jan. 2005. 1335

VOLUME 10, 2022 99165

http://dx.doi.org/10.32866/001c.13395
http://dx.doi.org/10.1016/j.trip.2020.100242
http://dx.doi.org/10.1155/2011/284909
http://dx.doi.org/10.1371/journal.pmed.0050074
http://dx.doi.org/10.1038/s41598-017-08241-1
http://dx.doi.org/10.1186/s12916-020-01597-8
http://dx.doi.org/10.2807/1560-7917.ES.2021.26.8.2000994
http://dx.doi.org/10.1038/s41467-021-20990-2


T. Cristóbal et al.: Using Data Mining to Estimate Patterns of Contagion-Risk Interactions in an Intercity PRTS

[37] T. Harko, F. S. N. Lobo, and M. K. Mak, ‘‘Exact analytical solutions of1336

the susceptible-infected-recovered (SIR) epidemic model and of the SIR1337

model with equal death and birth rates,’’ Appl. Math. Comput., vol. 236,1338

pp. 184–194, Mar. 2014.1339

[38] E. Volz and L. A. Meyers, ‘‘Susceptible–infected–recovered epidemics1340

in dynamic contact networks,’’ Proc. Royal Soc. B, Biol. Sci., vol. 274,1341

pp. 2925–2934, Dec. 2007.1342

[39] L. Isella, J. Stehlé, A. Barrat, C. Cattuto, J.-F. Pinton, and1343

W. Van den Broeck, ‘‘What’s in a crowd? Analysis of face-to-face1344

behavioral networks,’’ J. Theor. Biol., vol. 271, no. 1, pp. 166–180,1345

Feb. 2011.1346

[40] C. Cattuto, W. Broeck, A. Barrat, V. Colizza, J.-F. Pinton, and A. Vespig-1347

nani, ‘‘Dynamics of person-to-person interactions from distributed RFID1348

sensor networks,’’ PloS One, vol. 5, no. 7, pp. 1–9, 2010.1349

[41] M. Salathé, M. Kazandjieva, J. W. Lee, P. Levis, M. W. Feldman, and1350

J. H. Jones, ‘‘A high-resolution human contact network for infectious1351

disease transmission,’’ Proc. Nat. Acad. Sci. USA, vol. 107, no. 51,1352

pp. 22020–22025, Dec. 2010.1353

[42] L. Isella, M. Romano, A. Barrat, C. Cattuto, V. Colizza, W. Van den1354

Broeck, F. Gesualdo, E. Pandolfi, L. Ravà, C. Rizzo, and A. E. Tozzi,1355

‘‘Close encounters in a pediatric ward: Measuring face-to-face proximity1356

and mixing patterns with wearable sensors,’’ PLoS ONE, vol. 6, no. 2,1357

Feb. 2011, Art. no. e17144, doi: 10.1371/journal.pone.0017144.1358

[43] J. Stehlé, N. Voirin, A. Barrat, C. Cattuto, L. Isella, J.-F. Pinton,1359

M. Quaggiotto, W. Van den Broeck, C. Régis, B. Lina, and P. Vanhems,1360

‘‘High-resolution measurements of Face-to-Face contact patterns in a pri-1361

mary school,’’ PLoS ONE, vol. 6, no. 8, Aug. 2011, Art. no. e23176, doi:1362

10.1371/journal.pone.0023176.1363

[44] A. Stopczynski, A. S. Pentland, and S. Lehmann, ‘‘Physical proximity and1364

spreading in dynamic social networks,’’ 2015, arXiv:1509.06530.1365

[45] M. Génois and A. Barrat, ‘‘Can co-location be used as a proxy for face-1366

to-face contacts?’’ EPJ Data Sci., vol. 7, no. 1, p. 11, May 2018, doi:1367

10.1140/epjds/s13688-018-0140-1.1368

[46] A. Barnawi, P. Chhikara, R. Tekchandani, N. Kumar, and B. Alzahrani,1369

‘‘Artificial intelligence-enabled Internet of Things-based system for1370

COVID-19 screening using aerial thermal imaging,’’ Future Gener. Com-1371

put. Syst., vol. 124, pp. 119–132, Nov. 2021.1372

[47] A. Kumar, K. Sharma, H. Singh, S. G. Naugriya, S. S. Gill, and R. Buyya,1373

‘‘A drone-based networked system andmethods for combating coronavirus1374

disease (COVID-19) pandemic,’’ Future Gener. Comput. Syst., vol. 115,1375

pp. 1–19, Feb. 2020.1376

[48] S. Chang, ‘‘Mobility network models of COVID-19 explain inequities and1377

inform reopening,’’ Nature, vol. 589, no. 7840, pp. 82–87, Jan. 2021.1378

[49] W. Kermack and A. McKendrick, ‘‘A contribution to the mathemati-1379

cal theory of epidemics,’’ Roy. Soc., London, U.K., Tech. Rep., 1927,1380

pp. 700–721, vol. 115, no. 772.1381

[50] V. Chamola, V. Hassija, V. Gupta, and M. Guizani, ‘‘A comprehen-1382

sive review of the COVID-19 pandemic and the role of IoT, drones,1383

AI, blockchain, and 5G in managing its impact,’’ IEEE Access, vol. 8,1384

PP. 90225–90265, 2020.1385

[51] S. Merler and M. Ajelli, ‘‘The role of population heterogeneity and human1386

mobility in the spread of pandemic influenza,’’Proc. Roy. Soc. B, Biol. Sci.,1387

vol. 277, no. 1681, pp. 557–565, Feb. 2010.1388

[52] P. Cooley, S. Brown, J. Cajka, B. Chasteen, L. Ganapathi, J. Grefen-1389

stette, C. R. Hollingsworth, B. Y. Lee, B. Levine, W. D. Wheaton, and1390

D. K. Wagener, ‘‘The role of subway travel in an influenza epidemic: A1391

new York city simulation,’’ J. Urban Health, vol. 88, no. 5, pp. 982–995,1392

Oct. 2011.1393

[53] L. Goscé and A. Johansson, ‘‘Analysing the link between public transport1394

use and airborne transmission: Mobility and contagion in the London1395

underground,’’ Environ. Health, vol. 17, no. 1, pp. 1–11, Dec. 2018.1396

[54] J. Troko, P. Myles, J. Gibson, A. Hashim, J. Enstone, S. Kingdon,1397

C. Packham, S. Amin, A. Hayward, and J. N. Van-Tam, ‘‘Is public transport1398

a risk factor for acute respiratory infection?’’ BMC Infectious Diseases,1399

vol. 11, no. 1, pp. 1–6, Dec. 2011.1400

[55] K. Luo, ‘‘Transmission of SARS-CoV-2 in public transportation vehicles:1401

A case study in Hunan province, China,’’Open Forum Infectious Diseases,1402

vol. 7, no. 10, pp. 1–5, 2020.1403

[56] Y. Shen, C. Li, and H. Dong, ‘‘Community outbreak investigation of1404

SARS-CoV-2 transmission among bus riders in eastern China,’’ JAMA1405

Internal Med., vol. 180, no. 12, pp. 1665–1671, 2020.1406

[57] M. Hu, ‘‘Risk of coronavirus disease 2019 transmission in train passen-1407

gers: An epidemiological and modeling study,’’ Clin. Infectious Diseases,1408

vol. 72, no. 4, pp. 604–610, 2021.1409

[58] M. Severo, A. I. Ribeiro, R. Lucas, T. Leão, and H. Barros, ‘‘Urban 1410

rail transportation and SARS-Cov-2 infections: An ecological study in 1411

the Lisbon metropolitan area,’’ Frontiers Public Health, vol. 9, pp. 1–8, 1412

Feb. 2021. 1413

[59] Centers for Disease Control and Prevention. Appendices: Appendix 1414

A—Glosary of Key Terms. Accessed: Mar. 5, 2022. [Online]. Available: 1415

https://www.cdc.gov/coronavirus/2019-ncov/php/contact-tracing/contact- 1416

tracing-plan/appendix.html#Key-Terms 1417

[60] D.-T. Dinh, V.-N. Huynh, and S. Sriboonchitta, ‘‘Clustering mixed numer- 1418

ical and categorical data with missing values,’’ Inf. Sci., vol. 571, 1419

pp. 418–442, Sep. 2021. 1420

[61] R. Deb and A. W.-C. Liew, ‘‘Missing value imputation for the analysis 1421

of incomplete traffic accident data,’’ Inf. Sci., vol. 339, pp. 274–289, 1422

Apr. 2016. 1423

[62] D. Li, Y. Lin, X. Zhao, H. Song, and N. Zou, ‘‘Estimating a transit 1424

passenger trip origin-destination matrix using automatic fare collection 1425

system,’’ in Proc. Int. Conf. Database Syst. Adv. Appl., vol. 6637, 2011, 1426

pp. 502–513. 1427

[63] L. He and M. Trépanier, ‘‘Estimating the destination of unlinked trips 1428

in transit smart card fare data,’’ Transp. Res. Rec., vol. 2535, no. 1, 1429

pp. 97–104, 2019. 1430

[64] RStudio: Integrated Development Environment for R. Accessed: 1431

Feb. 2, 2022. [Online]. Available: http://www.rstudio.com/ 1432

[65] J. MacQueen, ‘‘Some methods for classification and analysis of multivari- 1433

ate observations,’’ in Proc. 5th Berkeley Symp. Math. Statist. Probabilities, 1434

1967, pp. 281–297. 1435

[66] P. J. Rousseeuw, ‘‘Silhouettes: A graphical aid to the interpretation and 1436

validation of cluster analysis,’’ J. Comput. Appl. Math., vol. 20, no. 1, 1437

pp. 53–65, 1987. 1438

TERESA CRISTÓBAL received the B.S. degree in 1439

computer science, the M.S. degree in intelligent 1440

systems and numeric applications in engineering, 1441

and the Ph.D. degree in computer science from 1442

the University of Las Palmas de Gran Canaria, 1443

Canary Island, Spain, in 1990, 2014, and 2019, 1444

respectively. 1445

Since 2012, she has been a Research Assistant 1446

with the Institute for Cybernetic, University of 1447

Las Palmas de Gran Canaria. Her research inter- 1448

ests include development of intelligent transport systems for public transport 1449

and using data mining based models for public information services. 1450

ALEXIS QUESADA-ARENCIBIA received the 1451

Graduate Engineering and Ph.D. degrees in com- 1452

puter science from the University of Las Palmas 1453

de Gran Canaria (ULPGC), in 1997 and 2001, 1454

respectively. 1455

He is currently a Doctor-Employed Teacher 1456

with the Computer Science and Systems Depart- 1457

ment, ULPGC. He is also a Research Member 1458

with the ULPGC Research Institute ‘‘University 1459

Institute for Cybernetics (IUCTC)’’. His research 1460

interests include cybernetics, robotics, artificial vision, and intelligent trans- 1461

port systems. He is one of the ChairMembers of the International Conference 1462

EUROCAST. 1463

GABRIELE S. DE BLASIO was born in Gran 1464

Canaria, Spain, in 1961. He received the B.Sc. 1465

degree in physics from the Complutense Univer- 1466

sity of Madrid, Spain, in 1984, and the Ph.D. 1467

degree in computer science from the University of 1468

Las Palmas de Gran Canaria (ULPGC), in 2009. 1469

He has been a Researcher with the Institute of 1470

Cybernetics Sciences and Technologies (IUCTC), 1471

ULPGC, since 1991. He is currently an Associate 1472

Professor with the Computer Science Depart- 1473

ment, ULPGC. His research interests include ubiquitous computing, indoor 1474

positioning systems, intelligent transportation systems, biocybernetics, and 1475

systems theory. He has served on the Organizing Committee for the Interna- 1476

tional Conference EUROCAST. 1477

99166 VOLUME 10, 2022

http://dx.doi.org/10.1371/journal.pone.0017144
http://dx.doi.org/10.1371/journal.pone.0023176
http://dx.doi.org/10.1140/epjds/s13688-018-0140-1


T. Cristóbal et al.: Using Data Mining to Estimate Patterns of Contagion-Risk Interactions in an Intercity PRTS

GABINO PADRÓN received the B.S. and Ph.D.1478

degrees in computer science from the University1479

of Las Palmas de Gran Canaria, Canary Islands,1480

Spain, in 1990 and 2015, respectively.1481

Since 1989, he has been a Professor with the1482

Informatics and Systems Department, University1483

of Las Palmas de Gran Canaria. His research1484

interests include ubiquitous computing, intelligent1485

transport systems, data mining, and technologies1486

for education.1487

FRANCISCO ALAYÓN was born in Las Palmas1488

de Gran Canaria, Spain, in 1964. He received the1489

B.S., M.S., and Ph.D. degrees in computer engi-1490

neering from the University of Las Palmas de Gran1491

Canaria, Canary Islands, Spain, in 1989 and 2007,1492

respectively.1493

Since 1989, he has been a Professor with the1494

Informatics and Systems Department, University1495

of Las Palmas de Gran Canaria. He is the author of1496

more than 50 articles and 20 inventions. He holds1497

one patent. His research interests include passenger transport systems1498

focuses in transport network planning, communications systems, and inte-1499

gration of the transport vehicle devices in the company’s data networks.1500

CARMELO R. GARCÍA received the B.S. and 1501

Ph.D. degrees in computer science from the 1502

University of Las Palmas de Gran Canaria, 1503

Canary Islands, Spain, in 1989 and 1995, 1504

respectively. 1505

Since 1987, he has been a Professor with 1506

the Informatics and Systems Department, Uni- 1507

versity of Las Palmas de Gran Canaria, where 1508

he is currently the Director. His research inter- 1509

ests include ubiquitous computing, intelligent 1510

transport systems, data mining, and technologies for education. 1511

Dr. García was a finalist of the Spain University Foundation National 1512

Award in the Technological Transfer Modality, in 2005. He was a recipient 1513

of the 11th International Conference on Ubiquitous Computing and Ambient 1514

Intelligence (UCAmI) Paper Award, in 2017. 1515

1516

VOLUME 10, 2022 99167


