Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/118835
Campo DC Valoridioma
dc.contributor.authorUtu, IDen_US
dc.contributor.authorHulka, Iosifen_US
dc.contributor.authorKazamer, Nen_US
dc.contributor.authorConstantin, ATen_US
dc.contributor.authorMarginean, Gen_US
dc.date.accessioned2022-10-14T11:06:18Z-
dc.date.available2022-10-14T11:06:18Z-
dc.date.issued2022en_US
dc.identifier.issn2073-4352en_US
dc.identifier.urihttp://hdl.handle.net/10553/118835-
dc.description.abstractTape brazing constitutes a cost-effective alternative surface protection technology for complex-shaped surfaces. The study explores the characteristics of high-temperature brazed coatings using a cobalt-based powder deposited on a stainless-steel substrate in order to protect parts subjected to hot temperatures in a wear-exposed environment. Microstructural imaging corroborated with x-ray diffraction analysis showed a complex phased structure consisting of intermetallic Cr-Ni, C-Co-W Laves type, and chromium carbide phases. The surface properties of the coatings, targeting hot corrosion behavior, erosion, wear resistance, and microhardness, were evaluated. The high-temperature corrosion test was performed for 100 h at 750◦C in a salt mixture consisting of 25 wt.% NaCl + 75 wt.% Na2SO4 . The degree of corrosion attack was closely connected with the exposure temperature, and the degradation of the material corresponding to the mechanisms of low-temperature hot corrosion. The erosion tests were carried out using alumina particles at a 90◦ impingement angle. The results, correlated with the microhardness measurements, have shown that Co-based coatings exhibited approximately 40% lower material loss compared to that of the steel substrate.en_US
dc.languageengen_US
dc.relation.ispartofCrystalsen_US
dc.subject330307 Tecnología de la corrosiónen_US
dc.subject.otherco-based alloysen_US
dc.subject.otherhot corrosionen_US
dc.subject.othersolid particle erosionen_US
dc.subject.othermicrostructureen_US
dc.subject.otherbrazingen_US
dc.titleHot-Corrosion and Particle Erosion Resistance of Co-Based Brazed Alloy Coatingsen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/cryst12060762en_US
dc.identifier.scopus2-s2.0-85131374840-
dc.identifier.isiWOS:000818349300001-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.description.lastpage12en_US
dc.identifier.issue6-
dc.description.firstpage1en_US
dc.relation.volume762en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.description.numberofpages12en_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
dc.description.sjr0,458
dc.description.jcr2,7
dc.description.sjrqQ2
dc.description.jcrqQ2
dc.description.scieSCIE
dc.description.miaricds10,8
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR Nanomaterials and Corrosion-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.fullNameHulka,Iosif-
Colección:Artículos
Adobe PDF (8,12 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.