Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/118835
DC FieldValueLanguage
dc.contributor.authorUtu, IDen_US
dc.contributor.authorHulka, Iosifen_US
dc.contributor.authorKazamer, Nen_US
dc.contributor.authorConstantin, ATen_US
dc.contributor.authorMarginean, Gen_US
dc.date.accessioned2022-10-14T11:06:18Z-
dc.date.available2022-10-14T11:06:18Z-
dc.date.issued2022en_US
dc.identifier.issn2073-4352en_US
dc.identifier.urihttp://hdl.handle.net/10553/118835-
dc.description.abstractTape brazing constitutes a cost-effective alternative surface protection technology for complex-shaped surfaces. The study explores the characteristics of high-temperature brazed coatings using a cobalt-based powder deposited on a stainless-steel substrate in order to protect parts subjected to hot temperatures in a wear-exposed environment. Microstructural imaging corroborated with x-ray diffraction analysis showed a complex phased structure consisting of intermetallic Cr-Ni, C-Co-W Laves type, and chromium carbide phases. The surface properties of the coatings, targeting hot corrosion behavior, erosion, wear resistance, and microhardness, were evaluated. The high-temperature corrosion test was performed for 100 h at 750◦C in a salt mixture consisting of 25 wt.% NaCl + 75 wt.% Na2SO4 . The degree of corrosion attack was closely connected with the exposure temperature, and the degradation of the material corresponding to the mechanisms of low-temperature hot corrosion. The erosion tests were carried out using alumina particles at a 90◦ impingement angle. The results, correlated with the microhardness measurements, have shown that Co-based coatings exhibited approximately 40% lower material loss compared to that of the steel substrate.en_US
dc.languageengen_US
dc.relation.ispartofCrystalsen_US
dc.subject330307 Tecnología de la corrosiónen_US
dc.subject.otherco-based alloysen_US
dc.subject.otherhot corrosionen_US
dc.subject.othersolid particle erosionen_US
dc.subject.othermicrostructureen_US
dc.subject.otherbrazingen_US
dc.titleHot-Corrosion and Particle Erosion Resistance of Co-Based Brazed Alloy Coatingsen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/cryst12060762en_US
dc.identifier.scopus2-s2.0-85131374840-
dc.identifier.isiWOS:000818349300001-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.description.lastpage12en_US
dc.identifier.issue6-
dc.description.firstpage1en_US
dc.relation.volume762en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.description.numberofpages12en_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
dc.description.sjr0,458
dc.description.jcr2,7
dc.description.sjrqQ2
dc.description.jcrqQ2
dc.description.scieSCIE
dc.description.miaricds10,8
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR Nanomaterials and Corrosion-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.fullNameHulka,Iosif-
Appears in Collections:Artículos
Adobe PDF (8,12 MB)
Show simple item record

SCOPUSTM   
Citations

4
checked on Nov 17, 2024

WEB OF SCIENCETM
Citations

4
checked on Nov 17, 2024

Page view(s)

15
checked on May 20, 2023

Download(s)

11
checked on May 20, 2023

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.