Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/117849
Campo DC Valoridioma
dc.contributor.authorFernández-López, Pabloen_US
dc.contributor.authorGarcia Baez, Patricioen_US
dc.contributor.authorCabrera-Leon, Ylermien_US
dc.contributor.authorNavarro-Mesa, Juan L.en_US
dc.contributor.authorSuárez-Araujo, Carmen Pazen_US
dc.date.accessioned2022-08-29T12:49:45Z-
dc.date.available2022-08-29T12:49:45Z-
dc.date.issued2022en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/117849-
dc.description.abstractWe present a computational study whose objective is to show the capacity of the Nitric Oxide (NO) diffusion for information recovery and indexing related to the classical neural architecture the Sparse Distributed Memory (SDM) has. The study is carried out by introducing NO diffusion dynamics by means of a Multi-compartment based NO Diffusion Model, in the storage process of the SDM. We develop a new SDM model, which we term Sparse Distributed Memory by Nitric Oxide diffusion (SDM-NO). Both of these architectures were computationally analysed. We have showed that the information indexing guided by the Nitric Oxide dynamics has a similar or slightly better behavior to the randomly guided by the SDM. For this study we have used two kinds of patterns, a) binary string patterns with eight bits and b) handwritten characters, that the indexing guided by the Nitric Oxide dynamics shows a similar or a little bit better behaviour to the guided indexing one performed randomly by the SDM. Nevertheless, we have also shown that both of the architectures do not perform well in these memory processes.en_US
dc.languageengen_US
dc.relation.ispartofIEEE Accessen_US
dc.sourceIEEE Access[EISSN 2169-3536], (Enero 2022)en_US
dc.subject120304 Inteligencia artificialen_US
dc.subject.otherArtificial Neural Networken_US
dc.subject.otherBehavioral Sciencesen_US
dc.subject.otherComputational Modelingen_US
dc.subject.otherComputer Architectureen_US
dc.subject.otherIndexingen_US
dc.subject.otherMathematical Modelsen_US
dc.subject.otherNeural-Indexingen_US
dc.subject.otherNeuronsen_US
dc.subject.otherNeurotransmittersen_US
dc.subject.otherNitric Oxideen_US
dc.subject.otherNitric Oxide Dynamicen_US
dc.subject.otherSparse Distributed Memoryen_US
dc.titleVolume signaling and neural-indexing by nitric oxide in artificial neural networksen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/ACCESS.2022.3196672en_US
dc.identifier.scopus85135763587-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid6602579067-
dc.contributor.authorscopusid6506952458-
dc.contributor.authorscopusid57192423564-
dc.contributor.authorscopusid9634488300-
dc.contributor.authorscopusid6603605708-
dc.identifier.eissn2169-3536-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.date.coverdateEnero 2022en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
dc.description.sjr0,926
dc.description.jcr3,9
dc.description.sjrqQ1
dc.description.jcrqQ2
dc.description.scieSCIE
dc.description.miaricds10,4
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0002-2135-6095-
crisitem.author.orcid0000-0002-9973-5319-
crisitem.author.orcid0000-0001-5709-2274-
crisitem.author.orcid0000-0003-3860-3424-
crisitem.author.orcid0000-0002-8826-0899-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.fullNameFernández López, Pablo Carmelo-
crisitem.author.fullNameGarcía Baez, Patricio-
crisitem.author.fullNameCabrera León, Ylermi-
crisitem.author.fullNameNavarro Mesa, Juan Luis-
crisitem.author.fullNameSuárez Araujo, Carmen Paz-
Colección:Artículos
Adobe PDF (2,11 MB)
Vista resumida

Citas SCOPUSTM   

1
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

1
actualizado el 17-nov-2024

Visitas

76
actualizado el 29-jun-2024

Descargas

20
actualizado el 29-jun-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.