Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/117849
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Fernández-López, Pablo | en_US |
dc.contributor.author | Garcia Baez, Patricio | en_US |
dc.contributor.author | Cabrera-Leon, Ylermi | en_US |
dc.contributor.author | Navarro-Mesa, Juan L. | en_US |
dc.contributor.author | Suárez-Araujo, Carmen Paz | en_US |
dc.date.accessioned | 2022-08-29T12:49:45Z | - |
dc.date.available | 2022-08-29T12:49:45Z | - |
dc.date.issued | 2022 | en_US |
dc.identifier.other | Scopus | - |
dc.identifier.uri | http://hdl.handle.net/10553/117849 | - |
dc.description.abstract | We present a computational study whose objective is to show the capacity of the Nitric Oxide (NO) diffusion for information recovery and indexing related to the classical neural architecture the Sparse Distributed Memory (SDM) has. The study is carried out by introducing NO diffusion dynamics by means of a Multi-compartment based NO Diffusion Model, in the storage process of the SDM. We develop a new SDM model, which we term Sparse Distributed Memory by Nitric Oxide diffusion (SDM-NO). Both of these architectures were computationally analysed. We have showed that the information indexing guided by the Nitric Oxide dynamics has a similar or slightly better behavior to the randomly guided by the SDM. For this study we have used two kinds of patterns, a) binary string patterns with eight bits and b) handwritten characters, that the indexing guided by the Nitric Oxide dynamics shows a similar or a little bit better behaviour to the guided indexing one performed randomly by the SDM. Nevertheless, we have also shown that both of the architectures do not perform well in these memory processes. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | IEEE Access | en_US |
dc.source | IEEE Access[EISSN 2169-3536], (Enero 2022) | en_US |
dc.subject | 120304 Inteligencia artificial | en_US |
dc.subject.other | Artificial Neural Network | en_US |
dc.subject.other | Behavioral Sciences | en_US |
dc.subject.other | Computational Modeling | en_US |
dc.subject.other | Computer Architecture | en_US |
dc.subject.other | Indexing | en_US |
dc.subject.other | Mathematical Models | en_US |
dc.subject.other | Neural-Indexing | en_US |
dc.subject.other | Neurons | en_US |
dc.subject.other | Neurotransmitters | en_US |
dc.subject.other | Nitric Oxide | en_US |
dc.subject.other | Nitric Oxide Dynamic | en_US |
dc.subject.other | Sparse Distributed Memory | en_US |
dc.title | Volume signaling and neural-indexing by nitric oxide in artificial neural networks | en_US |
dc.type | info:eu-repo/semantics/Article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1109/ACCESS.2022.3196672 | en_US |
dc.identifier.scopus | 85135763587 | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.authorscopusid | 6602579067 | - |
dc.contributor.authorscopusid | 6506952458 | - |
dc.contributor.authorscopusid | 57192423564 | - |
dc.contributor.authorscopusid | 9634488300 | - |
dc.contributor.authorscopusid | 6603605708 | - |
dc.identifier.eissn | 2169-3536 | - |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.utils.revision | Sí | en_US |
dc.date.coverdate | Enero 2022 | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-INF | en_US |
dc.description.sjr | 0,926 | |
dc.description.jcr | 3,9 | |
dc.description.sjrq | Q1 | |
dc.description.jcrq | Q2 | |
dc.description.scie | SCIE | |
dc.description.miaricds | 10,4 | |
item.grantfulltext | open | - |
item.fulltext | Con texto completo | - |
crisitem.author.dept | GIR IUCES: Computación inteligente, percepción y big data | - |
crisitem.author.dept | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.dept | GIR IUCES: Computación inteligente, percepción y big data | - |
crisitem.author.dept | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.dept | GIR IUCES: Computación inteligente, percepción y big data | - |
crisitem.author.dept | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | GIR IUCES: Computación inteligente, percepción y big data | - |
crisitem.author.dept | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.orcid | 0000-0002-2135-6095 | - |
crisitem.author.orcid | 0000-0002-9973-5319 | - |
crisitem.author.orcid | 0000-0001-5709-2274 | - |
crisitem.author.orcid | 0000-0003-3860-3424 | - |
crisitem.author.orcid | 0000-0002-8826-0899 | - |
crisitem.author.parentorg | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.parentorg | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.parentorg | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.parentorg | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.fullName | Fernández López, Pablo Carmelo | - |
crisitem.author.fullName | García Baez, Patricio | - |
crisitem.author.fullName | Cabrera León, Ylermi | - |
crisitem.author.fullName | Navarro Mesa, Juan Luis | - |
crisitem.author.fullName | Suárez Araujo, Carmen Paz | - |
Colección: | Artículos |
Citas SCOPUSTM
1
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
1
actualizado el 17-nov-2024
Visitas
76
actualizado el 29-jun-2024
Descargas
20
actualizado el 29-jun-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.