Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/117849
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Fernández-López, Pablo | en_US |
dc.contributor.author | Garcia Baez, Patricio | en_US |
dc.contributor.author | Cabrera-Leon, Ylermi | en_US |
dc.contributor.author | Navarro-Mesa, Juan L. | en_US |
dc.contributor.author | Suárez-Araujo, Carmen Paz | en_US |
dc.date.accessioned | 2022-08-29T12:49:45Z | - |
dc.date.available | 2022-08-29T12:49:45Z | - |
dc.date.issued | 2022 | en_US |
dc.identifier.other | Scopus | - |
dc.identifier.uri | http://hdl.handle.net/10553/117849 | - |
dc.description.abstract | We present a computational study whose objective is to show the capacity of the Nitric Oxide (NO) diffusion for information recovery and indexing related to the classical neural architecture the Sparse Distributed Memory (SDM) has. The study is carried out by introducing NO diffusion dynamics by means of a Multi-compartment based NO Diffusion Model, in the storage process of the SDM. We develop a new SDM model, which we term Sparse Distributed Memory by Nitric Oxide diffusion (SDM-NO). Both of these architectures were computationally analysed. We have showed that the information indexing guided by the Nitric Oxide dynamics has a similar or slightly better behavior to the randomly guided by the SDM. For this study we have used two kinds of patterns, a) binary string patterns with eight bits and b) handwritten characters, that the indexing guided by the Nitric Oxide dynamics shows a similar or a little bit better behaviour to the guided indexing one performed randomly by the SDM. Nevertheless, we have also shown that both of the architectures do not perform well in these memory processes. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | IEEE Access | en_US |
dc.source | IEEE Access[EISSN 2169-3536], (Enero 2022) | en_US |
dc.subject | 120304 Inteligencia artificial | en_US |
dc.subject.other | Artificial Neural Network | en_US |
dc.subject.other | Behavioral Sciences | en_US |
dc.subject.other | Computational Modeling | en_US |
dc.subject.other | Computer Architecture | en_US |
dc.subject.other | Indexing | en_US |
dc.subject.other | Mathematical Models | en_US |
dc.subject.other | Neural-Indexing | en_US |
dc.subject.other | Neurons | en_US |
dc.subject.other | Neurotransmitters | en_US |
dc.subject.other | Nitric Oxide | en_US |
dc.subject.other | Nitric Oxide Dynamic | en_US |
dc.subject.other | Sparse Distributed Memory | en_US |
dc.title | Volume signaling and neural-indexing by nitric oxide in artificial neural networks | en_US |
dc.type | info:eu-repo/semantics/Article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1109/ACCESS.2022.3196672 | en_US |
dc.identifier.scopus | 85135763587 | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.authorscopusid | 6602579067 | - |
dc.contributor.authorscopusid | 6506952458 | - |
dc.contributor.authorscopusid | 57192423564 | - |
dc.contributor.authorscopusid | 9634488300 | - |
dc.contributor.authorscopusid | 6603605708 | - |
dc.identifier.eissn | 2169-3536 | - |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.utils.revision | Sí | en_US |
dc.date.coverdate | Enero 2022 | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-INF | en_US |
dc.description.sjr | 0,926 | |
dc.description.jcr | 3,9 | |
dc.description.sjrq | Q1 | |
dc.description.jcrq | Q2 | |
dc.description.scie | SCIE | |
dc.description.miaricds | 10,4 | |
item.grantfulltext | open | - |
item.fulltext | Con texto completo | - |
crisitem.author.dept | GIR IUCES: Computación inteligente, percepción y big data | - |
crisitem.author.dept | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.dept | GIR IUCES: Computación inteligente, percepción y big data | - |
crisitem.author.dept | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.dept | GIR IUCES: Computación inteligente, percepción y big data | - |
crisitem.author.dept | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | GIR IUCES: Computación inteligente, percepción y big data | - |
crisitem.author.dept | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.orcid | 0000-0002-2135-6095 | - |
crisitem.author.orcid | 0000-0002-9973-5319 | - |
crisitem.author.orcid | 0000-0001-5709-2274 | - |
crisitem.author.orcid | 0000-0003-3860-3424 | - |
crisitem.author.orcid | 0000-0002-8826-0899 | - |
crisitem.author.parentorg | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.parentorg | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.parentorg | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.parentorg | IU de Cibernética, Empresa y Sociedad (IUCES) | - |
crisitem.author.fullName | Fernández López, Pablo Carmelo | - |
crisitem.author.fullName | García Baez, Patricio | - |
crisitem.author.fullName | Cabrera León, Ylermi | - |
crisitem.author.fullName | Navarro Mesa, Juan Luis | - |
crisitem.author.fullName | Suárez Araujo, Carmen Paz | - |
Appears in Collections: | Artículos |
SCOPUSTM
Citations
1
checked on Nov 10, 2024
WEB OF SCIENCETM
Citations
1
checked on Nov 10, 2024
Page view(s)
76
checked on Jun 29, 2024
Download(s)
20
checked on Jun 29, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.