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ABSTRACT We present a computational study whose objective is to show the capacity of the Nitric
Oxide (NO) diffusion for information recovery and indexing related to the classical neural architecture Sparse
Distributed Memory (SDM). The study is carried out by introducing NO diffusion dynamics by means of
a Multi-compartment based NO Diffusion Model in the storage process of the SDM. We develop a new
SDM model, which we term Sparse Distributed Memory by Nitric Oxide diffusion (SDM-NO). Both of
these architectures were computationally analysed. We have shown that the information indexing guided
by the Nitric Oxide dynamics has a similar or slightly better behaviour to the randomly guided indexing
by the SDM. Two kinds of patterns were used in the study: a) binary string patterns with eight bits and
b) handwritten characters. The indexing guided by the Nitric Oxide dynamics shows a similar or a little bit
better behaviour to the guided indexing one performed randomly by the SDM. Nevertheless, we have also
shown that both of the architectures do not perform well in these memory processes.

INDEX TERMS Artificial neural network, nitric oxide, nitric oxide dynamic, neural-indexing, sparse
distributed memory.

I. INTRODUCTION
Nitric Oxide (NO) is one of the seminal events in physiology,
physio-pathological and vascular research. It was indepen-
dently discovered by different research groups [1]–[4], when
at the end of the 1980′s its role as a neurotransmitter on the
nervous system was studied [5]–[7].

NO, together with Carbon Monoxide (CO) and
Hydrogen Sulfide (H2S) (gases that also show functions of
signaling) belong to the group of most toxic substances and
are synthesized by numerous organisms that carry out the
transmission of information function [8]. NO participates in
essential neural signaling functions, not only in the Peripheral
Nervous System (PNS), but also in the Central Nervous
System (CNS). In the PNS it acts as a control element in
cardiovascular, respiratory, and digestive systems. NO acts

The associate editor coordinating the review of this manuscript and
approving it for publication was Manuel Rosa-Zurera.

as a retrograde neurotransmitter in the CNS [9], [10]. Thus,
the hippocampus and the cortex are involved in Long Term
Potentiation (LTP), produced in the postsynaptic environ-
ment and acting in the presynaptic environment [11]–[15].
Long term depression (LTD) seems to be involved in the
cerebellum and striate nucleus, where signals are carried
out from the presynaptic to the postsynaptic environment.
In addition, NO is one of the known retrograde messengers
of the Biological Neural Network (BNN) with implications
for learning and memory. It participates in different types of
synaptic plasticity, in functions of synchronization of neural
activity and in the blood flow from the brain. NO contributes
in functions of stabilization of the synaptic efficiency and
ease of the release of the neurotransmitters, as well in the
directionality of dendritic tree growth [10].

Physical-chemical phenomena different to those produced
in non-neural tissues are not observed in the brain [16], how-
ever it has a greater ability to generate electrical phenomena,
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a special characteristic and one which seems to support its
own computational capacity [17]. This ability is similar to
the behaviour of any living being resides in the brain. Such
behavior is recognized as a weighted phenomenon between
genes and environment [15], where learning and memory act
as specific mechanisms that modulate such behavior through
environmental events.

Learning is the capacity for a system to absorb knowledge
from the environment without external programming. The
process of learning is how living beings modify their knowl-
edge of the outside world (changes in the nervous system
that result from the experience and originate lasting changes
in the behavior of living beings). Memory is understood as
the retention or storage of said knowledge. Understanding
memory means to understand how different concepts are
stored and recovered which are involved in the creation of our
thoughts. Connected to all of this is the overlapping of these
concepts, and closely related to this is how they are linked to
each other, or how some of them are activated when others are
evoked. In this context, the concept of the BNN information
indexing is needed.

These mechanisms are involved in memory and in learning
and are basically supported in neural processes of LTP and
LTD. For example, LTP is produced when repeated transmis-
sions or impulses through synapses of the neurons produce
an effect of positive feedback amongst themselves, easing
the execution of ulterior transmissions between those neural
circuits that have been involved in such LTP [18].

The idea that memory is physiologically distributed in the
brain seems to be a plausible and accepted assumption [19],
[20]. Several aspects of memory have been analysed using
different computational models [21]–[26], among others, the
SDM [27]. SDM was developed as a mathematical model of
long term humanmemory, where concepts in it are associated
with patterns which that model must store.

These patterns can be stored by using points in a high
dimensional space which act as storage addresses and which
are randomly calculated. This random selection of points
in space gives, as a result, points which are found to be
sufficiently isolated and far from each other. These points
act as storage indices of a representative part of the patterns
that must be stored, so that the network stores the patterns
in a distributed way. These storage indices would therefore
be sufficiently far from each other, so that the indexing of
the patterns is carried out in such a way that their recovery is
appropriate [27]. This approach is somewhat related (or can
be easily extrapolated) to the functioning of the brain and how
the brain finally stores concepts.

In this context, we present a computational study whose
objective is to see how the diffusion of NO can improve
information storage and indexing. A classical architecture of
associated memory such as the SDM is implemented, and in
this we introduce the dynamic of diffusion of NO bymeans of
a Model of Diffusion of NO based on Multi-compartmental
Systems [28].

This work is organized into four main sections. The
introduction places our objective into its context: a compu-
tational study of the implications of NO in neuro-indexing
of the information in the BNN, as well as in classical SDM
architecture.

The method section presents the NO dynamic model
and the development of the Sparse Distributed Memory by
NO Diffusion Model (SDM-NO). The methodology used to
obtain the SDM-NO is based on the modification of the
mechanism of indexing of the patterns that the SDM classical
model stores, showing that this indexing depends on the NO
dynamics.

The results section includes the development of this new
model and compares it to the classical model for the different
adjustment parameters that we have worked with: model
size (k), Kanerva radius (ρ) and the workload that the model
was subjected to (q). The study ends with a discussion of the
results followed by our conclusions.

II. METHOD
The current understanding of the relationship between nerve
cells which affect brain activity establishes a connection of
classical synaptic neurotransmission and the confluence of
cellular signals from different sources. These cellular signals
include the processes of diffusion of different chemical sub-
stances in the nervous tissue and their follow up reactions,
leading to the emergence of Volumetric Transmission (VT),
which carries out a type of complex (not simple) communica-
tion, at short and long distances. The diffusion of neuroactive
substances such as NO, CO or H2S are underlying mech-
anisms in the extracellular space, which acts as a reduced
environment for the separation of nerve cells and also serve
as a channel of information amongst each other [29] and [30].
Even though these substances belong to the most toxic group
known to us, they are present in numerous organisms (from
bacteria up to human beings), carrying out signaling functions
and information transmission [8]. NO carries out VT with
proven implication in LTP, in such a way that the absence of
NO does not produce LTP [15], [31]. Thus, NO is involved in
the changes that underline learning and memory formation.
Therefore NO diffusion will be the subject of this work.

We will analyse how the NO dynamics can influence
the formation of memories and the information indexing
of the BNN. We use a Compartment based NO Diffusion
Model [28], to introduce the NO dynamics in the mechanism
of information indexing that the SDM carries out.

A. NITRIC OXIDE DYNAMIC AS VOLUME SIGNAL
NO acts as an atypical neurotransmitter whose dynamic is
formed by a set of specific processes:
• NO Generation or Synthesis is functionally required in
the neural activity and begins by presynaptic release of
glutamic acid [12], which combines with the NMDA
receptors (N-methyl-d-aspartate), AMPA/kainate and
metabotropic, forcing the entry of Calcium (Ca2+)
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to the postsynaptic element where the activation of
the Calmodulin produces NO Synthase enzyme (NOS)
and activates different protein compounds [32]–[34].
Amongst said proteins calmodulin (CaM), together with
Ca2+ and NOS facilitate the oxidation of L-arginine
to synthesize citrulline and NO, causing a rapid and
transitory release of moderate quantities of NO that
diffuse in all directions before reaching the presynaptic
neuron. It is there that it recombines with different sub-
stances and adjusts the release of neurotransmitters such
as acetylcholine, aspartate or glutamic acid generating
a loop in the synaptic signaling, since the activation
process in the postsynaptic cell possesses a greater influ-
ence in its own process than the one activated in the
presynaptic one (see figure 1).
This generation process is not local; it is conditioned
only by the existence of the NOS enzyme and the
flow of Ca2+ unlike the classic neurotransmitter, which
is restricted by the synaptic terminals.

• NO Diffusion is moderated by the gradient of its own
concentration. As opposed to the classic neurotransmit-
ter, NO freely diffuses along with and around neural
tissue and it is permeable membrane, and is able to
move in its diffusion process up to 300 µm, reach-
ing 2 · 106 synapses [8], influencing those cells that
have appropriate receptors such as the Soluble Guanylyl
Cyclase (sGC) enzyme [12], [35]. Along this line,
NO does not act consistently with the Dynamic Polar-
ization law of Cajal [36], since the information transfer
is not carried out in one direction in the synapsis, but
instead three dimensionally in all directions (Volume
Transmission).

• The NO is able to self-regulate its production, using
its contribution to inhibit NOS activity by a negative
retroaction mechanism, leaving the area in a period of
refraction, during which time it cannot return to pro-
duce NO synthesis. It also recombines with different
substrates [37]. These processes are another difference
that NO reveals with conventional neurotransmitters.

Consequently, modeling the dynamics of NO implies gath-
ering each and every one of its processes in the model:
synthesis or generation, diffusion, and self-regulation, with
independence of the type of environment which is produc-
ing these dynamics, and for which we will use a nonlinear
compartamental dynamical system model [39], [40].

The NO Diffusion Model based on Multi-compartmental
Systems [28], which is used in this computational study, is a
discrete model that defines space by means of discrete ele-
ments of volume, called compartments. These compartments
have associated individual concentrations Ci of NO, and it is
where any of the processes that make up the NO dynamics
can take place. Figure 2 shows the framework in a mono-
dimensional environment.

The synthesis process of NO is represented by the function
Fi, which defines the quantity of NO that is created in this
process, just like the profile of this generation of NO over

time. As a result, when Fi > 0, there is a process of synthesis
of NO in the compartment i and it is generating new NO,
and when Fi = 0 in that compartment there is no synthesis
process.

The diffusion process is based on transport phenomena;
where these last ones determine which must move from the
compartments of larger concentration to those of lower con-
centration. It can be inferred that the speed of the NO flow
between two compartments is proportional to the difference
of NO concentration between both compartments.

Finally, the variation of the NO concentration in a
compartment is influenced by the self-regulation of the
substance (−λiCi).
The NO dynamic is expressed, from a mathematical

perspective, by means of equation 1, which corresponds
to equation of mass balance of our compartments Model.
We can see how the different processes (synthesis, diffusion
and self-regulation) are influencing the dynamics of
nitric oxide. The expression shows how the three dif-
ferent aforementioned processes are involved in the NO
dynamic.

dCi
dt
= Fi + Di,i−1(Ci−1 − Ci)+ Di,i+1(Ci+1 − Ci)− λiCi

(1)

where Di,i−1 and Di,i+1 are the coefficients of diffusion
between the compartments i and i − 1 and between i and
i + 1 respectively. λi is the NO self-regulation coefficient,
considering that said self-regulation is proportional to con-
centration [28].

The global behavior of the system and, consequently, the
diffusion model of NO in a mono-dimensional environment
is given by a system of N interrelated equations amongst
themselves with existent boundary conditions.There are two
following conditions:

1) Non-cyclical boundary conditions. The variation of the
concentration in the compartments limits (i = 1 and
i = N ) only depend on the NO dynamics that is gen-
erated in them and in the neighboring compartments,
according to the linear layout of the compartments
(compartment i = 2 and compartment i = N − 1).

2) Cyclical boundary conditions. In this case, the com-
partments located in the limits (i = 1 and i = N ) are
connected to each other, where then the neighboring
compartments of compartment i = 1 are compartments
i = 2 and i = N , and from compartment i = N
compartments i = N − 1 and i = 1.

This way, the model is defined by a system of first order
differential equations (equation 2).

dC
dt
= HC + F, (2)

where C = (C1,C2, . . . ,CN )T , F = (F1,F2, . . . ,FN )T , and
for the case of conditions of cyclical surrounding, we have
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FIGURE 1. NO as a retrograde cellular messenger in CNS. Adapted from [38].

FIGURE 2. Mono-dimensional environment of compartments for the NO
dynamics.

the following expression for H (tridiagonal matrix).−(D1,N + D1,2 + λ1) D . . .

D −(D2,1 + D2,3 + λ2) . . .
...

...
. . .

 (3)

Which in environments with completely isotropic and
homogeneous features Di,j = Dj,i,∀i, j and λi = λj,∀i, j,
provide a direct solution. The former model for a mono-
dimensional environment, made up of N compartments, can
be tended for bidimensional and three dimensional environ-
ments like those used in this work, whichwould be in function
of the way in how we define the diffusion space, explained
in section II-C.

B. SPARSE DISTRIBUTED MEMORY MODEL
Sparse distributed memory (SDM) [27] is considered a varia-
tion of Random Access Memory (RAM), and it is a model of
associated memory that is made up of two main components
(address matrix Q and memory matrix M ) (see figure 3).
SDM is characterized by the following features:

• Instead of addressing to a single memory address, the
SDM calculates the corresponding distance between the
set address and all configured addresses in its address
matrixQ. When all these distances have been calculated,
the registers of memory M , whose distance is less than
the set Radius value, are activated.

• Storage is carried out by adding +1 in the positions of
all registers of M that have been activated, if and only
if the value that is stored in said position is equal to 1.
Otherwise −1 is added.

• Gathering a stored datum is carried out by per-
forming a series of operations with the registers of
M that are activated. First, for each position, all
registers in an active state are added up. If the sum
for each position is greater than or equal to zero,
the recovered register then has a 1 in this position;
otherwise, 0.

In order to understand the procedure of learning and recov-
ery of patterns in the SDM we must consider the set A =
{0, 1} being worked on, in addition to the set made up of p
pairs of elements (xµ, yµ) ∈ (An,Am) where µ = 1..p.

Two steps are needed before proceeding to the Learning
and Recovery Phases. They are:

1) Choose a value for k that satisfies n � k � 2n. This
value is the number of physical storage registers in the
memory.

2) A Qk×n matrix, whose elements are qij ∈ A, is ran-
domly calculated.

The learning phase is made up of two stages. In the first
stage, each one of the p associations (xµ, yµ) is carried out in
the following steps:
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FIGURE 3. SDM scheme which stores m-bit registers.

a) Calculate the Hamming distance vector hµ = Qx×n ⊗
xµ, where the operation ⊗ is defined as follows:

hµi =
n∑
j=1

qij ⊕ x
µ
j . (4)

where i = 1..k and µ = 1..p, and consequently the
stored values in the input of vector hµ are integers
between 1 and n.

b) A Kanerva radius ρ is chosen. It must be a number in
the range n/2 ≥ ρ ≥ 1.

c) The internal transition column vector bµ, is calculated,
with dimension k , and whose ith component is com-
puted using the following expression:

bµi =
{
1 if hµi ≤ ρ
0 otherwise

(5)

where i = 1..k and µ = 1..p.
d) CalculateMµmatrix, with dimensions k×m, according

to the following:

mµij =
{ 1 if (bµi = 1) ∧ (yµj = 1)
−1 if (bµi = 1) ∧ (yµj = 0)
0 otherwise

(6)

where i = 1..k , j = 1..m andµ = 1..p. This calculation
is the same as performing the following operations with
vectors yµ and bµ:

mµij = (2yµj b
µ
i − 1)bµi . (7)

The second stage in the Learning phase deals with the
addition operations of the p calculated matrices Mµ

from the first stage. Consequently, we calculate M by

means of the following expression:

M =
p∑

µ=1

Mµ. (8)

The Recovery phase is also made up of two stages, starting
with input pattern eω, whereω = 1..p if the noise level equals
zero then eω = xω. The steps of the first stage are:

a) Calculate the Hamming distance vector hω = Qk×n ⊗
eω, where, in this case the operation ω is defined from
the following:

hωi =
n∑
j=1

qij ⊕ eωj . (9)

where i = 1..k and ω = 1..p.
b) Calculate the internal transition column vector bω, with

dimension k , and whose ith component is calculated
using the following expression:

bωi =
{
1 if hωi ≤ ρ
0 otherwise

(10)

where i = 1..k and ω = 1..p.

There are three steps in the second stage:

a) The m representative thresholds are calculated in the
vector θω, whose ith component is calculated using the
following expression:

θωj =
1
2

k∑
i=1

mij. (11)

where i = 1..k , j = 1..m and ω = 1..p.

82250 VOLUME 10, 2022



P. Fernández-López et al.: Volume Signaling and Neural-Indexing by Nitric Oxide in Artificial Neural Networks

b) Get a second internal transition column vector tω with
dimension m, whose ith component is calculated using
the following expression:

tωj =
k∑
i=1

mijbωi . (12)

where i = 1..k , j = 1..m and ω = 1..p.
c) Finally the output of the SDM sω, of m dimensions,

is obtained, which corresponds to the best recovery
from the memory of the pattern stored yω. The calcula-
tion of sω is carried out using the following expression:

sωj =
{
1 if tωj ≥ θ

ω
j

0 otherwise
(13)

where j = 1..m and ω = 1..p.

Modifying the calculation of the threshold vector θω set-
ting the previous vector 0 equal to the zero vector for all ω,
allows us to establish a variation of the SDM model in its
Recovery Method.

C. SPARSE DISTRIBUTED MEMORY MODEL BY DIFFUSION
The difference between our SDM by diffusion model
(SDM-NO) and the classic SDMmodel is in the consideration
of the NO diffusion dynamic in the construction of the Q
matrix. Our aim is to compare the way in which the NO
diffusion indexes information in matrix M , to how it is ran-
domly done when the SDM model is used. Figure 4 presents
a schematic of our modified version of the SDM.

The Q generator considering NO diffusion is constructed
using the following:

We define a diffusion space in direct relation with the
concept of distance between the elements xµ ∈ An. This
diffusion space1n will be made up of a set of compartments
{Cj}, where each compartment has an associated bitmask
mj that is built on the set {•, 1}n, where • represents the
possibility that there is either a 1 or a 0 in the position where
it is found. There is also an integer 1 < i < n associated with
each compartment which quantifies the number of 1′s found
in mj.

We can then proceed to define the diffusion space when
n = 3 in the following way: 13 = {C1,C2,C3,C4,C5,C6}

and with the following set of associated masks {m1 =

1 • •,m2 = •1•,m3 = • • 1,m4 = 11•,m5 = 1 •
1,m6 = •11}. Similarly we arrive to 14 = {C1,C2,

C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14} and its
set of associated bitmasks {m1 = 1 • ••,m2 = •1 • •,
m3 = • • 1•,m4 = • • •1,m5 = 11 • •,m6 = 1 •
1•,m7 = 1 • •1,m8 = •11•,m9 = •1 • 1,m10 = • • 11,
m11 = 111•,m12 = 11 • 1,m13 = 1 • 11,m14 = •111} and
successively for any n > 4.

The distance definition [27] can be extended to collect the
distance between the two bitmasks, since we will define the
connectivity between the two compartments as a function of
this concept.

FIGURE 4. SDM schematic that stores m bit registers, where the
calculation of the Q matrix is carried out based on the diffusion dynamic.

TABLE 1. Distances between each pair of involved masks in the diffusion
space 13.

Given any two bitmasks mj and mk , which are associated
to two compartments Cj and Ck ∈ 1n, we define the distance
d(mj,mk ) between them as the distance that exists between
the two defined patterns by mj and mk when we set • = 0.
Table 1 shows the calculation of the distances for 13.

Using the previous definition of distance between bit-
masks, we establish that two compartments Cj and Ck
are connected if their associated bitmasks satisfy that
d(mj,mk ) = 1. This allows us to establish the diffusion space
for any value of n. Figures 5 and 6 show the diffusion spaces
for n = 3 and n = 4 respectively.
The diffusion dynamic takes place in this space and allows

us to construct a Q matrix following the modified probabili-
ties in the qij. These probabilities change as a function of the
influences they have on the associated compartments in that
diffusion space and the influences that these compartments
have on the probabilities.

The above constructs a Q matrix, showing the probability
of the possible addressing vectors of the matrix as a func-
tion of the diffusion dynamics which has taken place in its
associated compartment. For example, for a SDM-NOmodel
with n = 3, we have seen that the diffusion space 13 we
are working with is made up of 6 compartments, whose
diffusion dynamics will define the probability of the different
addressing vectors that are present in the Q matrix in the
following way:

Compartment C1 has as associated bitmask m1 = 1 • •,
and the probability that the directionality vector 100 is found
in Q is f1(cmax1 , cmax2 , cmax3 , cmax4 , cmax5 , cmax6 ), where cmax1 ,

cmax2 , cmax3 , cmax4 , cmax5 , cmax6 correspond to the maximum
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FIGURE 5. Diffusion space 13.

FIGURE 6. Diffusion space 14.

concentration of NO reached in said compartments and f1 is
an orthogonality function of cmax1 on the remaining maxi-
mum concentrations reached in the other compartments. In a
similar way we can calculate the probabilities of the differ-
ent addressing vectors associated to the bitmasks of each
compartment.

This process of calculation of probabilities of the different
addressing vectors is easily extended for any value of n, and
does not always fix a value of associated probability to the
addressing vectors that force them to be included in the Q
matrix.

Lastly, the fact that the size k of the memory always is
smaller than the number of compartments that constitutes the
diffusion space must also be considered.

III. RESULTS
Our initial hypothesis under study is that NO diffusion
dynamic could improve the way in which Sparse Distributed
Memory indexes information in its learning phase. A com-
putational study on indexing information is carried out and
serves as the starting point of our formal study.

No structural modification of the model is aimed. Index-
ing information refers to how the SDM network internally
locates patterns. In classic SDM, this location has important
consequences in the final functionality, since it must mini-
mize overlap of stored patterns (xµ, yµ), in proportion to the
value displayed in the Kanerva radius ρ. Our comparative
study uses 8 bit memories: a classic 8 bit SDM and an

8 bit SDM-NO memory. We identify the following working
variables to analyse the behavior of both models:
• Network size, (k) is given by the size of that part of the
network responsible for the addressing of the patterns.

• Network workload, (q) is the number of stored patterns
in the network.

• Kanerva radius (ρ), is one of the functional parameters
of the network, with implications for the directionality
dynamics of the network.

• Network performance (ζ ) is the recovery capacity of the
network, in accordance to what is stored.

Given these considerations, we analyse the performance
of memories when we store and recover 8 bit randomly
generated binary patterns and then use them as inputs for both
networks. We focus on the ability to recover stored patterns
in a functionality state where the network workload exceeds
the network size.

The concept of capacity in our SDM-NO model must be
handled with caution. Asymptotic behavior of the ability of
the SDM model has been studied from different perspec-
tives [41]–[43]. This capacity is related with the ability of
the model to recover a stored pattern (assuming a specified
degree of accuracy) when we request a readout in which we
use addressing patterns close to the addressing pattern with
which it was stored. This situation is strongly related with the
tolerance of the model to noise found in the stored patterns
and which are used in the recovery process.

As mentioned previously, our study focuses on the concept
of indexing, showing its relationship with the Q matrix and
the way in which it is generated. To do so we have used
a definition of ζ (network performance) requiring complete
recovery of patterns without analyzing if the SDM-NOmodel
has modified its noise tolerance.

Figures 7 to 14 present a comparison of both memories
using different network sizes. These figures always show the
network performance (ζ ) as a function of network workload
(q) and Kanerva radius ρ, when studying different network
sizes (k and n).

Network performance values ζ throughout the study have
been in the range (0, 1), where value of 0 means the network
was unable to recover any stored pattern and the value of
1 revealed that the network was able to recover all stored
patterns. The approach was applied to different sizes k of the
model to store a number of patterns which was greater than
the model size.

Figure 7 shows us models performance as a function of the
Kanerva radius (ρ) and the network workload. By focusing
on the basic recovery method (figure 7a), which fixes aver-
age values for the thresholds θω, a minimized generalized
performance is revealed in both networks for all values in all
parameters, suggesting that both, SDM and SDM-NOmodel,
when the Kanerva radius ρ = 1, and independently of net-
work workload, is unable to recover the stored patterns in it.
When the radius ρ increases, an improvement in performance
is observed, reaching a recovery rate of approximately 20%
when the Kanerva radius values are ρ = 3 or ρ = 4.
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FIGURE 7. Models performance (SDM black and SDM-NO red) for size
k = 8, as a function of Kanerva radius ρ and the network workload q.
(a) Basic pattern recovery method and (b) Model using θω = 0.

And yet the same figure 7a allows us to see how the
behavior of the SDM-NOnetwork slightly improves the SDM
network for values of ρ = 1 to 3 and half workload, and for
values of ρ = 3 and minimum network workload, as noted
in the areas where the surface corresponding to SDM-NO is
greater than that of the SDM.

The behavior of models when null thresholds θω = 0 are
used is similar to those commented previously, showing an
apparent inversion with regards to the values of ρ where the
network seems intent on improving functionality or perfor-
mance (see figure 7b).

Figures 8, 9 and 10, show model performance for network
sizes that increase from k = 29 up to k = 116. We can
observe that networks improve their recovery ability to what
has been stored based on increase in size. In these figures
two types of recovery methods are also displayed, with clear
differences depending on the values of θω: average values
(subfigures 8a, 9a and 10a) and null values (8b, 9b and 10b).
The behavior of both methods is confirmed to reflect oppo-
site performance. The first method offers better evidence of

FIGURE 8. Graph of model performance (SDM black and SDM-NO red) for
size k = 29, as a function of Kanerva radius ρ and the network workload
(a) Basic pattern recovery method and (b) Model with θω = 0.

functionality for high values of the Kanerva radius, while the
second one reveals the opposite.

All results from this analysis have been confirmed by
means of a quantitative study using two different kinds of
patterns:

a) Random binary string with 8 bits,
b) Binary images of handwritten alphabet characters with

a dimension 10× 10.

We will study the number of patterns that can be
completely recovered by both SDM and SDM-NO archi-
tectures when they work with prior pattern types. When
pattern type is from set a), we use a network size of k =
116 with different workload values q within the interval
[max(k/2, n),min(2k, 2n)]. Obtained results for a ρ value
varying from 1 to n/2 can be seen in table 2. The best
behaviour in both models is obtained when ρ = 3. Thus,
when both networks are subject to q = 232 patterns, prac-
tically all those stored are recovered (217 for SDM network
and 225 for the SDM-NO network). These results confirm the
obtained performance profiles, see figures 9 and 10.
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FIGURE 9. Models performance (SDM black and SDM-NO red) for size
k = 58, as a function of the Kanerva radius ρ and the network workload.
(a) Basic pattern recovery method and (b) Model with θω = 0.

TABLE 2. The number of completely recovered patterns from the SDM
and SDM-NO networks, using random binary patterns of n = 8 bits and
k = 116.

Figure 11 shows how the ζ (n = 8, k = 116, ρ = 3)
function behaves as q increases. Note that both network mod-
els reveal better performance values, almost at 100% (all the
stored patterns have been completely recovered) for workload
values q that exceed the network size, q� k . Low qworkload
values, q� k , reveal performance levels around 88% for the
SDM network and 86% for the SDM-NO network. When q
and k are practically equal q ∼= k , both models perform at a
very high 95% level. A review of obtained results reveals that
the SDM-NO network model performs practically the same
as the traditional SDM network model.

FIGURE 10. Models performance (SDM black SDM-NO red) size k = 116,
as function of Kanerva radius ρ and the network workload. (a) Basic
pattern recovery method (b) Model with θω = 0.

FIGURE 11. Network comparison (SDM in blue, SDM-NO in red),
according to their total recovery capacities.

We finally confirm the previously mentioned analysis of
our results using the type b) set of patterns. To do so we used
the following parameter values in the configuration of both
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FIGURE 12. Results belonging to recovery of some handwritten characters patterns by
the two neural architectures, SDM and SDM-NO.

TABLE 3. Number of binary image patterns, handwritten characters, with
n = 100 bits and k = 9902, that are completely recovered by SDM and
SDM-NO networks.

models:

• Pattern size, n = 100 bits,
• network size k = 9902,
• and ρ = 49,

Network workload q takes on the following values: q =
{4951, 7427, 9902, 14853, 19804}, allowing low workloads,
covering half of the network size, as well as high workloads,
which is twice the size of the network.

Upon completion of the storage of pattern set stage for both
studied SDM network models, the recovered patterns by each
of the two SDMmodels, are summarized in table 3, using the
following nomenclature:

• PRSDM : completely recovered patterns from the SDM
network.

• PNRSDM : partially recovered patterns from the SDM
network.

• PRSDM−NO: completely recovered patterns from the
SDM-NO network.

• PNRSDM−NO: partially recovered patterns from the
SDM-NO network.

Complete recovery means that the neural architectures
have been able to recover the exact stored pattern (recovered
value for each image pixel is exactly the same as the stored
value for that pixel).

We can observe in Table 3 that both neural architec-
tures, SDM and SDM-NO, are able to obtain only a very
small number of whole recovered binary image patterns.
Figure 12 shows the results for recovery of different binary

TABLE 4. Percentage of zero and one pixels corresponding the
handwritten character images which were completely recovered by both
networks and for different network workloads q.

FIGURE 13. Comparative histogram of the recovery process for both
models, Kanerva (SDM) and our proposal (SDM-NO).

image patterns performed by the two models of sparse dis-
tributed memory. Note that in neither case are the images
that were previously stored are completely recovered. How-
ever, a visual review indicates that the performance by the
SDM-NOmodel is superior to the one by the SDM (Kanerva)
model.

More specific details of the recovery process by both mod-
els can be obtained by means of an analysis of the percentage
of correctly recovered ones and zeros in the stored patterns.
These results as a function of workload q are shown in
table 4. Notice that, with regards to recovery of ones, that
SDM-NO network is superior to the SDM network. When
compared to column for a q = 4951 workload, on average
the SDM-NO network recovers 34% of the ones (active bits)
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from the stored/original image, as opposed to 17% from the
traditional SDM network. A review of the results for the
recovery of zeros, however, is not the same. Both network
models perform at approximately the same level, 96% for the
SDM-NO network and 98% for the SDM network.

Figure 13 displays a comparison of the recovery process
carried out by both neural network models using histograms
that relate the number of recovered images (y axis) with
number of bits completely recovered by image (x axis).
The histograms reveals that the SDM-NO network recovered
more than 400 images where the image coincided with the
previously stored image in 49..50 bits. This result and those
shown in figure 12 and table 4 identify the importance of
recovery of those bits which contain the greatest amount of
information. Our proposed SDM-NO network model is more
effectively at acquiring this characteristic.

IV. DISCUSSION AND CONCLUSION
Obtained results from the Study and previous explanations
provided in the results section not only reveal different
behaviour and different capacity of information recovery by
the SDM network of Kanerva and our proposed SDM-NO
network, but it has also shown the different capacities of
the models when using different information environments
(random binary patterns versus binary images of handwritten
characters).

Results associated with 8 bit randomly binary patterns
suggest that studied variability in ρ (Kanerva radius) seems to
induce a similar asymptotical behaviour in the performance
of both SDM and SDM-NO models when working with this
type of information environment.

The performance of the basic recovery method is generally
superior to the recovery method θω = 0, and it is in this latter
method where the greatest differences between the SDM
model and the SDM-NO model can be seen throughout all
of the variability of ρ and when they are subject to the low
workload of storage (close to network size).

The SDM-NO network with basic recovery method per-
forms best when ρ is near 3, however when using high values,
such as those approaching the limit n/2, its performance
declines. The behavior of this samemodel is exactly the oppo-
site when using half storage workload: the SDM-NO model
shows better performance. Nonetheless, this improvement is
minor with respect to the SDM with basic recovery method.
Thus, it seems as if NO dynamics attain greater indexing of
the patterns in high values of ρ but not approaching the limit
of n/2, and when they are in half storage workload.

The SDM-NO with recovery method θω = 0, and regard-
ing the variability of ρ, presents an opposite behavior to
the basic recovery method: best improvements occur with
low values of ρ, whereas worst occur at high values. Even
though there are clear differences between this model, which
incorporates NO dynamics, and its counterpart SDM, both
with the same recovery method, the asymptotical behavior
of its performance, is similar in a low storage workload
scenario.

FIGURE 14. Performance of SDM model (black) and SDM-NO model (red))
for size k = 484, as a function of Kanerva radius ρ and for the network
workload. Basic pattern recovery method.

This type of performance is typical and to be expected,
since the way patterns are indexed in the network is the same
for both recoverymethods independently of the used recovery
method.

The study has allowed us to identify the parametric inter-
vals where models perform best. These ranges of values were
used in the study, and we tested the models with a set of
non-random patterns (handwritten letters), formed by binary
100 bit images (10×10 dimension)which allowed both neural
network architectures to tackle problems that approximate
real cases.

We have observed that the levels of complete pattern recov-
ery for both network models are not very high. Almost all of
the patterns end up being catalogued in the partial recovered
subset PNR∗ , and the number of correctly recovered bits in the
images for both models is found to be between 50..55%.

The detailed analysis of recovery by bit typology reveals
that the SDM-NO network is better at recovery for areas of
images that contain greater amounts of information. Results
obtained are independent of workload q, and the SDM-NO
network model displays the same proportion of correctly
recovered bits (with greater information input) for lower
workload values (half of network workload) as well as for
higher workloads (double network size).

As regards indexing capacity we can conclude that the new
model with its underlying mechanism in the NO diffusion
dynamics shows similar behaviour to the randomly indexing
network model.

A review of the different information settings used by the
proposed SDM architecture and its behavior with the NO
diffusion dynamic indexing mechanism shows satisfactory
levels of complete pattern recovery and a slight improvement
on increasing pattern sizes, figure 14, although this is not the
case when working with handwritten characters, where the
complete pattern recovery level is close to 0%.

In conclusion, recapping what was previously stated the
indexing carried out by the SDM-NO model is quite similar
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to the indexing performed by the SDM model, showing such
indexing a dependence on the structural features of the infor-
mation environment where both models are working.

Consequently, this computational study allows us to
conclude that the NO diffusion dynamics model presents
acceptable abilities to index information in the artificial SDM
model, improving the indexing when compared to those car-
ried out by randomly generated directionality patterns, since
indexing capacity and its capacity for information recovery
is practically the same in both models when working with
random information in structured information settings which
reflect real applications, and when the NO diffusion dynamic
generates better indexing and recovery.

Finally, this work is the first step studying the asymptotic
behaviour of the SDM-NO model capacity and its relation
with the tolerance to the noise of the stored patterns. In future
works we will also analyse the possible influence of oth-
ers NO diffusion aspects and mechanisms on the SDM-NO
model performance (ζ ).
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