Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/115583
Título: | A Bayesian Model to Predict COVID-19 Severity in Children | Autores/as: | Domínguez-Rodríguez, Sara Villaverde, Serena Sanz-Santaeufemia, Francisco J. Grasa, Carlos Soriano-Arandes, Antoni Saavedra-Lozano, Jesús Fumadó, Victoria Epalza, Cristina Serna-Pascual, Miquel Alonso-Cadenas, José A. Rodríguez-Molino, Paula Pujol-Morro, Joan Aguilera-Alonso, David Simó, Silvia Villanueva-Medina, Sara Iglesias-Bouzas, M. Isabel Mellado, M. José Herrero, Blanca Melendo, Susana De la Torre, Mercedes Del Rosal, Teresa Soler-Palacin, Pere Calvo, Cristina Urretavizcaya-Martínez, María Pareja, Marta Ara-Montojo, Fátima Ruiz del Prado, Yolanda Gallego, Nerea Illán Ramos, Marta Cobos, Elena Tagarro, Alfredo Moraleda, Cinta Peña Quintana, Luis |
Clasificación UNESCO: | 32 Ciencias médicas 320110 Pediatría 320505 Enfermedades infecciosas |
Palabras clave: | COVID-19 SARS-CoV-2 Children Syndrome Bayesian |
Fecha de publicación: | 2021 | Publicación seriada: | Pediatric Infectious Disease Journal | Resumen: | Background: We aimed to identify risk factors causing critical disease in hospitalized children with COVID-19 and to build a predictive model to anticipate the probability of need for critical care. Methods: We conducted a multicenter, prospective study of children with SARS-CoV-2 infection in 52 Spanish hospitals. The primary outcome was the need for critical care. We used a multivariable Bayesian model to estimate the probability of needing critical care. Results: The study enrolled 350 children from March 12, 2020, to July 1, 2020: 292 (83.4%) and 214 (73.7%) were considered to have relevant COVID-19, of whom 24.2% required critical care. Four major clinical syndromes of decreasing severity were identified: multi-inflammatory syndrome (MIS-C) (17.3%), bronchopulmonary (51.4%), gastrointestinal (11.6%), and mild syndrome (19.6%). Main risk factors were high C-reactive protein and creatinine concentration, lymphopenia, low platelets, anemia, tachycardia, age, neutrophilia, leukocytosis, and low oxygen saturation. These risk factors increased the risk of critical disease depending on the syndrome: the more severe the syndrome, the more risk the factors conferred. Based on our findings, we developed an online risk prediction tool (https://rserver.h12o.es/pediatria/EPICOAPP/, username: user, password: 0000). Conclusions: Risk factors for severe COVID-19 include inflammation, cytopenia, age, comorbidities, and organ dysfunction. The more severe the syndrome, the more the risk factor increases the risk of critical illness. Risk of severe disease can be predicted with a Bayesian model. | URI: | http://hdl.handle.net/10553/115583 | ISSN: | 1532-0987 | DOI: | 10.1097/INF.0000000000003204 | Fuente: | Pediatric Infectious Disease Journal [1532-0987], v. 40(8), pp. 287-293 (Agosto 2021) |
Colección: | Artículos |
Citas de WEB OF SCIENCETM
Citations
17
actualizado el 17-nov-2024
Visitas
53
actualizado el 27-abr-2024
Descargas
30
actualizado el 27-abr-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.