Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/115583
Campo DC Valoridioma
dc.contributor.authorDomínguez-Rodríguez, Saraen_US
dc.contributor.authorVillaverde, Serenaen_US
dc.contributor.authorSanz-Santaeufemia, Francisco J.en_US
dc.contributor.authorGrasa, Carlosen_US
dc.contributor.authorSoriano-Arandes, Antonien_US
dc.contributor.authorSaavedra-Lozano, Jesúsen_US
dc.contributor.authorFumadó, Victoriaen_US
dc.contributor.authorEpalza, Cristinaen_US
dc.contributor.authorSerna-Pascual, Miquelen_US
dc.contributor.authorAlonso-Cadenas, José A.en_US
dc.contributor.authorRodríguez-Molino, Paulaen_US
dc.contributor.authorPujol-Morro, Joanen_US
dc.contributor.authorAguilera-Alonso, Daviden_US
dc.contributor.authorSimó, Silviaen_US
dc.contributor.authorVillanueva-Medina, Saraen_US
dc.contributor.authorIglesias-Bouzas, M. Isabelen_US
dc.contributor.authorMellado, M. Joséen_US
dc.contributor.authorHerrero, Blancaen_US
dc.contributor.authorMelendo, Susanaen_US
dc.contributor.authorDe la Torre, Mercedesen_US
dc.contributor.authorDel Rosal, Teresaen_US
dc.contributor.authorSoler-Palacin, Pereen_US
dc.contributor.authorCalvo, Cristinaen_US
dc.contributor.authorUrretavizcaya-Martínez, Maríaen_US
dc.contributor.authorPareja, Martaen_US
dc.contributor.authorAra-Montojo, Fátimaen_US
dc.contributor.authorRuiz del Prado, Yolandaen_US
dc.contributor.authorGallego, Nereaen_US
dc.contributor.authorIllán Ramos, Martaen_US
dc.contributor.authorCobos, Elenaen_US
dc.contributor.authorTagarro, Alfredoen_US
dc.contributor.authorMoraleda, Cintaen_US
dc.contributor.authorPeña Quintana, Luisen_US
dc.date.accessioned2022-07-01T14:31:31Z-
dc.date.available2022-07-01T14:31:31Z-
dc.date.issued2021en_US
dc.identifier.issn1532-0987en_US
dc.identifier.urihttp://hdl.handle.net/10553/115583-
dc.description.abstractBackground: We aimed to identify risk factors causing critical disease in hospitalized children with COVID-19 and to build a predictive model to anticipate the probability of need for critical care. Methods: We conducted a multicenter, prospective study of children with SARS-CoV-2 infection in 52 Spanish hospitals. The primary outcome was the need for critical care. We used a multivariable Bayesian model to estimate the probability of needing critical care. Results: The study enrolled 350 children from March 12, 2020, to July 1, 2020: 292 (83.4%) and 214 (73.7%) were considered to have relevant COVID-19, of whom 24.2% required critical care. Four major clinical syndromes of decreasing severity were identified: multi-inflammatory syndrome (MIS-C) (17.3%), bronchopulmonary (51.4%), gastrointestinal (11.6%), and mild syndrome (19.6%). Main risk factors were high C-reactive protein and creatinine concentration, lymphopenia, low platelets, anemia, tachycardia, age, neutrophilia, leukocytosis, and low oxygen saturation. These risk factors increased the risk of critical disease depending on the syndrome: the more severe the syndrome, the more risk the factors conferred. Based on our findings, we developed an online risk prediction tool (https://rserver.h12o.es/pediatria/EPICOAPP/, username: user, password: 0000). Conclusions: Risk factors for severe COVID-19 include inflammation, cytopenia, age, comorbidities, and organ dysfunction. The more severe the syndrome, the more the risk factor increases the risk of critical illness. Risk of severe disease can be predicted with a Bayesian model.en_US
dc.languageengen_US
dc.relation.ispartofPediatric Infectious Disease Journalen_US
dc.sourcePediatric Infectious Disease Journal [1532-0987], v. 40(8), pp. 287-293 (Agosto 2021)en_US
dc.subject32 Ciencias médicasen_US
dc.subject320110 Pediatríaen_US
dc.subject320505 Enfermedades infecciosasen_US
dc.subject.otherCOVID-19en_US
dc.subject.otherSARS-CoV-2en_US
dc.subject.otherChildrenen_US
dc.subject.otherSyndromeen_US
dc.subject.otherBayesianen_US
dc.titleA Bayesian Model to Predict COVID-19 Severity in Childrenen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1097/INF.0000000000003204en_US
dc.contributor.orcid0000-001-6052-5894-
dc.contributor.authorscopusid6603266503-
dc.description.lastpage293en_US
dc.identifier.issue8-
dc.description.firstpage287en_US
dc.relation.volume280en_US
dc.investigacionCiencias de la Saluden_US
dc.type2Artículoen_US
dc.description.notasCon la participación del Grupo de Trabajo EPICO-AEPen_US
dc.description.numberofpages7en_US
dc.utils.revisionen_US
dc.date.coverdateAgosto 2021en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-MEDen_US
dc.description.sjr1,104
dc.description.jcr3,806
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds11,0
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR IUIBS: Nutrición-
crisitem.author.deptIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.deptDepartamento de Ciencias Clínicas-
crisitem.author.orcid0000-0001-6052-5894-
crisitem.author.parentorgIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.fullNamePeña Quintana, Luis-
Colección:Artículos
Adobe PDF (605,62 kB)
Vista resumida

Citas de WEB OF SCIENCETM
Citations

19
actualizado el 30-mar-2025

Visitas

53
actualizado el 27-abr-2024

Descargas

30
actualizado el 27-abr-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.