Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/115583
Title: | A Bayesian Model to Predict COVID-19 Severity in Children | Authors: | Domínguez-Rodríguez, Sara Villaverde, Serena Sanz-Santaeufemia, Francisco J. Grasa, Carlos Soriano-Arandes, Antoni Saavedra-Lozano, Jesús Fumadó, Victoria Epalza, Cristina Serna-Pascual, Miquel Alonso-Cadenas, José A. Rodríguez-Molino, Paula Pujol-Morro, Joan Aguilera-Alonso, David Simó, Silvia Villanueva-Medina, Sara Iglesias-Bouzas, M. Isabel Mellado, M. José Herrero, Blanca Melendo, Susana De la Torre, Mercedes Del Rosal, Teresa Soler-Palacin, Pere Calvo, Cristina Urretavizcaya-Martínez, María Pareja, Marta Ara-Montojo, Fátima Ruiz del Prado, Yolanda Gallego, Nerea Illán Ramos, Marta Cobos, Elena Tagarro, Alfredo Moraleda, Cinta Peña Quintana, Luis |
UNESCO Clasification: | 32 Ciencias médicas 320110 Pediatría 320505 Enfermedades infecciosas |
Keywords: | COVID-19 SARS-CoV-2 Children Syndrome Bayesian |
Issue Date: | 2021 | Journal: | Pediatric Infectious Disease Journal | Abstract: | Background: We aimed to identify risk factors causing critical disease in hospitalized children with COVID-19 and to build a predictive model to anticipate the probability of need for critical care. Methods: We conducted a multicenter, prospective study of children with SARS-CoV-2 infection in 52 Spanish hospitals. The primary outcome was the need for critical care. We used a multivariable Bayesian model to estimate the probability of needing critical care. Results: The study enrolled 350 children from March 12, 2020, to July 1, 2020: 292 (83.4%) and 214 (73.7%) were considered to have relevant COVID-19, of whom 24.2% required critical care. Four major clinical syndromes of decreasing severity were identified: multi-inflammatory syndrome (MIS-C) (17.3%), bronchopulmonary (51.4%), gastrointestinal (11.6%), and mild syndrome (19.6%). Main risk factors were high C-reactive protein and creatinine concentration, lymphopenia, low platelets, anemia, tachycardia, age, neutrophilia, leukocytosis, and low oxygen saturation. These risk factors increased the risk of critical disease depending on the syndrome: the more severe the syndrome, the more risk the factors conferred. Based on our findings, we developed an online risk prediction tool (https://rserver.h12o.es/pediatria/EPICOAPP/, username: user, password: 0000). Conclusions: Risk factors for severe COVID-19 include inflammation, cytopenia, age, comorbidities, and organ dysfunction. The more severe the syndrome, the more the risk factor increases the risk of critical illness. Risk of severe disease can be predicted with a Bayesian model. | URI: | http://hdl.handle.net/10553/115583 | ISSN: | 1532-0987 | DOI: | 10.1097/INF.0000000000003204 | Source: | Pediatric Infectious Disease Journal [1532-0987], v. 40(8), pp. 287-293 (Agosto 2021) |
Appears in Collections: | Artículos |
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.